-
Notifications
You must be signed in to change notification settings - Fork 808
Open
Description
I've got the error raised by NEQuantizationLayer validate method, because NEQuantizationLayer does not support QSYMM8_PER_CHANNEL as output:
| * Valid data type configurations: | |
| * |src |dst | | |
| * |:------------------|:--------------------------------------| | |
| * |QASYMM8 |QASYMM8, QASYMM8_SIGNED, QASYMM16 | | |
| * |QASYMM8_SIGNED |QASYMM8, QASYMM8_SIGNED, QASYMM16 | | |
| * |F16 |QASYMM8, QASYMM8_SIGNED, QASYMM16 | | |
| * |F32 |QASYMM8, QASYMM8_SIGNED, QASYMM16 | |
Does
NEQuantizationLayer reject QSYMM8_PER_CHANNEL on purpose or is it the issue?
Reproducer:
// scons arch=arm64-v8.2-a neon=1 opencl=0 openmp=0 cppthreads=1 os=macos data_layout_support=all build=native asserts=1 debug=1 --jobs=8 --silent os=macos build=native fixed_format_kernels=True validation_tests=1 examples=1
/*
* Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Types.h"
#include "arm_compute/core/WindowIterator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEFunctions.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"
#include "utils/Utils.h"
#include <cstdlib>
using namespace arm_compute;
using namespace utils;
// Return reasonable quantisation parameters to use for an array of floats
// based on min and max values
QuantizationInfo choose_quantization_params(float min, float max)
{
// Extend the [min,max] interval to contain 0 so we can represent it exactly
min = std::min(min, 0.f);
max = std::max(max, 0.f);
// Set the quantized min and max in float values
const float qmin = 0;
const float qmax = 255;
// Determine the scale
const float scale = (max - min) / (qmax - qmin);
// Determine the zero-point; using affine equation val = (qval-zerop) * scale
const float zero_point_real = qmin - min / scale;
// But we need to nudge the zero_point to an integer (exact quantized value)
std::uint8_t zero_point_nudged = 0;
if(zero_point_real < qmin)
{
zero_point_nudged = qmin;
}
else if(zero_point_real > qmax)
{
zero_point_nudged = qmax;
}
else
{
zero_point_nudged = static_cast<std::uint8_t>(support::cpp11::round(zero_point_real));
}
QuantizationInfo qinfo = QuantizationInfo(scale, zero_point_nudged);
return qinfo;
}
std::vector<float> generate_quantization_scales(size_t channels, float start_value) {
std::vector<float> values(channels);
for(size_t i = 0; i < channels; i++) {
values[i] = start_value + static_cast<float>(i) / 10.f;
}
return values;
}
std::ostream& operator<<(std::ostream& os, const TensorShape& shape) {
return os << "[" << shape[0] << ", " << shape[1] << ", " << shape[2] << ", " << shape[3] << "]";
}
std::ostream& operator<<(std::ostream& os, const std::vector<float>& values) {
os << "{";
for(size_t i = 0; i < values.size(); i++) {
std::cout << values[i] << " ";
}
os << "}";
return os;
}
std::ostream& operator<<(std::ostream& os, const ITensorInfo* tensor_info) {
const auto data_type = tensor_info->data_type();
os << "pr=";
switch (data_type) {
case DataType::S8: {
os << "S8";
break;
}
case DataType::QSYMM8: {
os << "QSYMM8";
break;
}
case DataType::QASYMM8: {
os << "QASYMM8";
break;
}
case DataType::QASYMM8_SIGNED: {
os << "QASYMM8_SIGNED";
break;
}
case DataType::S32: {
os << "S32";
break;
}
case DataType::F32: {
os << "F32";
break;
}
default: {
os << "[UNKNOWN]";
break;
}
}
const auto scales = tensor_info->quantization_info().scale();
return os << " shape=" << tensor_info->tensor_shape() << " q=" << scales;
}
int main(int/* argc*/, char** /*argv*/)
{
Tensor src1;
Tensor src2;
Tensor dst0;
Tensor q_src1;
Tensor q_src2;
Tensor q_dst0;
Tensor q_res;
Tensor q_res_output;
size_t n = 1;
size_t c = 1;
// A matrix: a1 x a2
size_t a1 = 16;
size_t a2 = 6;
// B matrix: b1 x b2
size_t b1 = 6;
size_t b2 = 16;
// Initialise input matrices
src1.allocator()->init(TensorInfo(TensorShape(a2, a1, c, n), 1, DataType::F32));
src2.allocator()->init(TensorInfo(TensorShape(b2, b1, c, n), 1, DataType::F32));
// Allocate matrices
src1.allocator()->allocate();
src2.allocator()->allocate();
// Fill in tensors, by default fill in with known data - for easy testing
auto *src1_ptr = reinterpret_cast<float *>(src1.buffer());
auto *src2_ptr = reinterpret_cast<float *>(src2.buffer());
// Fill in: one is the identity matrix, other is sequential values
// src1: Identity matrix
for(size_t i_n = 0; i_n < n; i_n++) {
for(size_t i_c = 0; i_c < c; i_c++) {
for(size_t i_hw = 0; i_hw < a1 * a2; i_hw++)
{
//src1_ptr[i_hw + i_c * a1 * a2 + i_n * i_c * a1 * a2] = i_hw + i_c * a1 * a2 + i_n * i_c * a1 * a2;
src1_ptr[i_hw + i_c * a1 * a2 + i_n * i_c * a1 * a2] = 1.f + static_cast<float>(i_c);
}
}
}
for(size_t i_n = 0; i_n < n; i_n++) {
for(size_t i_c = 0; i_c < c; i_c++) {
for(size_t i_hw = 0; i_hw < b1 * b2; i_hw++)
{
//src2_ptr[i_hw + i_c * b1 * b2 + i_n * i_c * b1 * b2] = i_hw + i_c * a1 * a2 + i_n * i_c * b1 * b2;
src2_ptr[i_hw + i_c * b1 * b2 + i_n * i_c * b1 * b2] = -2.f - static_cast<float>(i_c);
}
}
}
std::cout << "src1 " << src1.info() << ":" << std::endl;
src1.print(std::cout);
std::cout << "src2 " << src2.info() << ":" << std::endl;
src2.print(std::cout);
const QuantizationInfo src1_qinfo(0.2f);
// per-tensor quantization:
//const QuantizationInfo src2_qinfo(0.2f);
// per-channel quantization:
const auto scales2 = generate_quantization_scales(6, 0.2f);
const QuantizationInfo src2_qinfo(scales2);
std::cout << "scales2: " << scales2 << std::endl;
// We now have the quantisation info and can configure the quantised tensors
q_src1.allocator()->init(TensorInfo(TensorShape(a2, a1, c, n), 1, DataType::QASYMM8_SIGNED, src1_qinfo));
q_src2.allocator()->init(TensorInfo(TensorShape(b2, b1, c, n), 1, DataType::QSYMM8_PER_CHANNEL, src2_qinfo));
// In this approach we use the QuantizationLayer construct to perform quantization
NEQuantizationLayer q1;
NEQuantizationLayer q2;
q1.configure(&src1, &q_src1);
q2.configure(&src2, &q_src2);
// Configure low precision gemm and initialise result tensor (pre-output)
NEGEMMLowpMatrixMultiplyCore qgemm;
q_res.allocator()->init(TensorInfo(TensorShape(a1, b2, c, n), 1, DataType::S32));
qgemm.configure(&q_src1, &q_src2, nullptr, &q_res);
// Allocate all tensors
q_src1.allocator()->allocate();
q_src2.allocator()->allocate();
q_dst0.allocator()->allocate();
q_res.allocator()->allocate();
q_res_output.allocator()->allocate();
// Run quantization layers (quantizes values of each tensor)
q1.run();
q2.run();
// Run low precision matrix multiply kernel
qgemm.run();
//#if ARM_COMPUTE_DEBUG_ENABLED
// Print quantized source matrices
std::cout << "q_src1 " << q_src1.info() << ":" << std::endl;
q_src1.print(std::cout);
std::cout << "q_src2 " << q_src2.info() << ":" << std::endl;
q_src2.print(std::cout);
// Print result matrix in int32 form - before output stage processing
std::cout << "Lowp GEMM output " << q_res.info() << ":" << std::endl;
q_res.print(std::cout);
//#endif // ARM_COMPUTE_DEBUG_ENABLED
return 0;
}