-
Notifications
You must be signed in to change notification settings - Fork 17
Description
Hi all,
For a long time, I've noticed that {Biostrings} is very weird in terms of memory usage. For instance, when one subsets a DNAStringSet object to create a much smaller DNAStringSet object, object sizes do not change much (if at all). Here is a demonstration, comparing a DNAStringSet object with an entire plant genome to another (much smaller) DNAStringSet object with promoter sequences only:
suppressPackageStartupMessages({
library(Biostrings)
library(GenomicRanges)
library(lobstr)
})
options(timeout = 1e4)
# Load genome and annotation
genome <- readDNAStringSet(
"https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-61/plants/fasta/hordeum_vulgare/dna/Hordeum_vulgare.MorexV3_pseudomolecules_assembly.dna_rm.toplevel.fa.gz"
)
names(genome) <- gsub(" .*", "", names(genome))
annot <- rtracklayer::import(
"https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-61/plants/gff3/hordeum_vulgare/Hordeum_vulgare.MorexV3_pseudomolecules_assembly.61.gff3.gz"
)
# Keep genes only and add seqlengths
annot <- annot[annot$type == "gene"]
sl <- setNames(width(genome), names(genome))
sl <- sl[seqlevels(annot)]
seqlengths(annot) <- sl
# Extract promoter sequences
prom_ranges <- trim(promoters(annot, 1000, 200))
prom_seqs <- BSgenome::getSeq(genome, prom_ranges)
names(prom_seqs) <- prom_ranges$gene_id
# Select promoters of random genes
sel_genes <- sample(names(prom_seqs), 1e4, replace = FALSE)
prom_seqs_subset <- prom_seqs[sel_genes]
# Inspect objects
size_df <- data.frame(
name = c("genome", "promoters", "promoters_subset"),
size = c(
obj_size(genome),
obj_size(prom_seqs),
obj_size(prom_seqs_subset)
),
Mbp = c(
sum(nchar(genome)) / 1e6,
sum(nchar(prom_seqs)) / 1e6,
sum(nchar(prom_seqs_subset)) / 1e6
)
)
size_df
#> name size Mbp
#> 1 genome 4.23 GB 4225.57752
#> 2 promoters 4.25 GB 42.98556
#> 3 promoters_subset 4.25 GB 11.99864
# Does removing `genome` do anything?
rm(genome)
size_df2 <- data.frame(
name = c("promoters", "promoters_subset"),
size = c(
obj_size(prom_seqs),
obj_size(prom_seqs_subset)
),
Mbp = c(
sum(nchar(prom_seqs)) / 1e6,
sum(nchar(prom_seqs_subset)) / 1e6
)
)
size_df2
#> name size Mbp
#> 1 promoters 4.25 GB 42.98556
#> 2 promoters_subset 4.25 GB 11.99864
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.1 (2024-06-14)
#> os Ubuntu 22.04.4 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Brussels
#> date 2025-08-07
#> pandoc 3.2 @ /usr/lib/rstudio/resources/app/bin/quarto/bin/tools/x86_64/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> abind 1.4-5 2016-07-21 [1] CRAN (R 4.4.1)
#> Biobase 2.64.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> BiocGenerics * 0.50.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> BiocIO 1.14.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> BiocParallel 1.38.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> Biostrings * 2.72.1 2024-06-02 [1] Bioconductor 3.19 (R 4.4.1)
#> bitops 1.0-7 2021-04-24 [1] CRAN (R 4.4.1)
#> BSgenome 1.72.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.1)
#> codetools 0.2-20 2024-03-31 [1] CRAN (R 4.4.1)
#> crayon 1.5.3 2024-06-20 [1] CRAN (R 4.4.1)
#> curl 5.2.1 2024-03-01 [1] CRAN (R 4.4.1)
#> DelayedArray 0.30.1 2024-05-07 [1] Bioconductor 3.19 (R 4.4.1)
#> digest 0.6.36 2024-06-23 [1] CRAN (R 4.4.1)
#> evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.1)
#> fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.1)
#> fs 1.6.4 2024-04-25 [1] CRAN (R 4.4.1)
#> GenomeInfoDb * 1.40.1 2024-05-24 [1] Bioconductor 3.19 (R 4.4.1)
#> GenomeInfoDbData 1.2.12 2024-07-24 [1] Bioconductor
#> GenomicAlignments 1.40.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> GenomicRanges * 1.56.1 2024-06-12 [1] Bioconductor 3.19 (R 4.4.1)
#> glue 1.8.0 2024-09-30 [1] https://cran.r-universe.dev (R 4.4.1)
#> htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.1)
#> httr 1.4.7 2023-08-15 [1] CRAN (R 4.4.1)
#> IRanges * 2.38.1 2024-07-03 [1] Bioconductor 3.19 (R 4.4.1)
#> jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.1)
#> knitr 1.48 2024-07-07 [1] CRAN (R 4.4.1)
#> lattice 0.22-6 2024-03-20 [1] CRAN (R 4.4.1)
#> lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.1)
#> lobstr * 1.1.2 2022-06-22 [1] CRAN (R 4.4.1)
#> Matrix 1.7-0 2024-04-26 [1] CRAN (R 4.4.1)
#> MatrixGenerics 1.16.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> matrixStats 1.3.0 2024-04-11 [1] CRAN (R 4.4.1)
#> prettyunits 1.2.0 2023-09-24 [1] CRAN (R 4.4.1)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.1)
#> RCurl 1.98-1.16 2024-07-11 [1] CRAN (R 4.4.1)
#> reprex 2.1.1 2024-07-06 [1] CRAN (R 4.4.1)
#> restfulr 0.0.15 2022-06-16 [1] CRAN (R 4.4.1)
#> rjson 0.2.21 2022-01-09 [1] CRAN (R 4.4.1)
#> rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.1)
#> rmarkdown 2.27 2024-05-17 [1] CRAN (R 4.4.1)
#> Rsamtools 2.20.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> rstudioapi 0.16.0 2024-03-24 [1] CRAN (R 4.4.1)
#> rtracklayer 1.64.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> S4Arrays 1.4.1 2024-05-20 [1] Bioconductor 3.19 (R 4.4.1)
#> S4Vectors * 0.42.1 2024-07-03 [1] Bioconductor 3.19 (R 4.4.1)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.4.1)
#> SparseArray 1.4.8 2024-05-24 [1] Bioconductor 3.19 (R 4.4.1)
#> SummarizedExperiment 1.34.0 2024-05-01 [1] Bioconductor 3.19 (R 4.4.1)
#> UCSC.utils 1.0.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> withr 3.0.0 2024-01-16 [1] CRAN (R 4.4.1)
#> xfun 0.51 2025-02-19 [1] CRAN (R 4.4.1)
#> XML 3.99-0.17 2024-06-25 [1] CRAN (R 4.4.1)
#> XVector * 0.44.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#> yaml 2.3.9 2024-07-05 [1] CRAN (R 4.4.1)
#> zlibbioc 1.50.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
#>
#> [1] /home/faalm/R/x86_64-pc-linux-gnu-library/4.4
#> [2] /usr/local/lib/R/site-library
#> [3] /usr/lib/R/site-library
#> [4] /usr/lib/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────Created on 2025-08-07 with reprex v2.1.1
Note that the number of sequences is dramatically different, while object sizes remain pretty much the same. Is that something you are aware of? Why does this happen?
As a side comment, I've also noticed that, for small sets of sequences, it's more efficient to store gzipped FASTA files compared to binary .rds files with XStringSet objects. This is not true for large XStringSet objects, though. It seems like subsetting a large XStringSet object preserves something of the original object in the subset. Does that make sense?
All the best,
Fabricio