Skip to content

Conversation

@github-actions
Copy link
Contributor

@github-actions github-actions bot commented Nov 28, 2025

Update external collections reference from daily fetch. See Python API User Guide / Collections discovery

Collections validation

⚠️ 32 warning(s) detected - please review the validation logs (logs.txt)

Changed file

eodag/resources/ext_collections.json

commit 55152899244de8c2a93ccb4f5fd1fb03b221c7de


Note: Detailed diffs are available in the job summary.

eumetsat_ds - collections:

+ EO:EUM:DAT:0694
+ EO:EUM:DAT:1069
+ EO:EUM:DAT:1070
+ EO:EUM:DAT:1071
+ EO:EUM:DAT:1072
+ EO:EUM:DAT:1073
+ EO:EUM:DAT:1074

Changes grouped by JSON paths:


description
8 collection(s) affected (cop_marine)

Click to expand for detailed diffs
cop_marine - collections_config - GLOBAL_OMI_CLIMVAR_enso_Tzt_anomaly
--- old
+++ new
@@ -1,5 +1,5 @@
 {
-    "description": "\"_DEFINITION_'\n\nNINO34 sub surface temperature anomaly (\u00b0C) is defined as the difference between the subsurface temperature  averaged over the 170\u00b0W-120\u00b0W 5\u00b0S,-5\u00b0N area  and the climatological reference value over same area  (GLOBAL_MULTIYEAR_PHY_ENS_001_031). Spatial averaging was weighted by surface area. Monthly mean values are given here. The reference period is 1993-2014.  \n\n**CONTEXT**\n\nEl Nino Southern Oscillation (ENSO) is one of the most important sources of climatic variability resulting from a strong coupling between ocean and atmosphere in the central tropical Pacific and affecting surrounding populations. Globally, it impacts ecosystems, precipitation, and freshwater resources (Glantz, 2001). ENSO is mainly characterized by two anomalous states that last from several months to more than a year and recur irregularly on a typical time scale of 2-7 years. The warm phase El Ni\u00f1o is broadly characterized by a weakening of the easterly trade winds at interannual timescales associated with surface and subsurface processes leading to a surface warming in the eastern Pacific. Opposite changes are observed during the cold phase La Ni\u00f1a (review in Wang et al., 2017). Nino 3.4 sub-surface Temperature Anomaly is a good indicator of the state of the Central tropical Pacific el Nino conditions and enable to monitor the evolution the ENSO phase.\n\n**CMEMS KEY FINDINGS **\n\nOver the 1993-2023 period, there were several episodes of strong positive ENSO (el nino) phases in particular during the 1997/1998 winter and the 2015/2016 winter, where NINO3.4 indicator reached positive values larger than 2\u00b0C (and remained above 0.5\u00b0C during more than 6 months). Several La Nina events were also observed like during the 1998/1999 winter and during the 2010/2011 winter.  \nThe NINO34 subsurface indicator is a good index to monitor the state of ENSO phase and a useful tool to help seasonal forecasting of atmospheric conditions. \n\nNote: The key findings will be updated annually in November, in line with OMI evolutions.\n\n**DOI (product):** \nhttps://doi.org/10.48670/moi-00220\n\n**References:**\n\n* Copernicus Marine Service Ocean State Report. (2018). Journal of Operational Oceanography, 11(sup1), S1\u2013S142. https://doi.org/10.1080/1755876X.2018.1489208\n",
+    "description": "**DEFINITION**\n\nNINO34 sub surface temperature anomaly (\u00b0C) is defined as the difference between the subsurface temperature  averaged over the 170\u00b0W-120\u00b0W 5\u00b0S,-5\u00b0N area  and the climatological reference value over same area  (GLOBAL_MULTIYEAR_PHY_ENS_001_031). Spatial averaging was weighted by surface area. Monthly mean values are given here. The reference period is 1993-2014.  \n\n**CONTEXT**\n\nEl Nino Southern Oscillation (ENSO) is one of the most important sources of climatic variability resulting from a strong coupling between ocean and atmosphere in the central tropical Pacific and affecting surrounding populations. Globally, it impacts ecosystems, precipitation, and freshwater resources (Glantz, 2001). ENSO is mainly characterized by two anomalous states that last from several months to more than a year and recur irregularly on a typical time scale of 2-7 years. The warm phase El Ni\u00f1o is broadly characterized by a weakening of the easterly trade winds at interannual timescales associated with surface and subsurface processes leading to a surface warming in the eastern Pacific. Opposite changes are observed during the cold phase La Ni\u00f1a (review in Wang et al., 2017). Nino 3.4 sub-surface Temperature Anomaly is a good indicator of the state of the Central tropical Pacific el Nino conditions and enable to monitor the evolution the ENSO phase.\n\n**CMEMS KEY FINDINGS**\n\nOver the 1993-2023 period, there were several episodes of strong positive ENSO (el nino) phases in particular during the 1997/1998 winter and the 2015/2016 winter, where NINO3.4 indicator reached positive values larger than 2\u00b0C (and remained above 0.5\u00b0C during more than 6 months). Several La Nina events were also observed like during the 1998/1999 winter and during the 2010/2011 winter.  \nThe NINO34 subsurface indicator is a good index to monitor the state of ENSO phase and a useful tool to help seasonal forecasting of atmospheric conditions. \n\nNote: The key findings will be updated annually in November, in line with OMI evolutions.\n\n**DOI (product):** \nhttps://doi.org/10.48670/moi-00220\n\n**References:**\n\n* Copernicus Marine Service Ocean State Report. (2018). Journal of Operational Oceanography, 11(sup1), S1\u2013S142. https://doi.org/10.1080/1755876X.2018.1489208\n",
     "extent": {
         "spatial": {
             "bbox": [
cop_marine - collections_config - MULTIOBS_GLO_BIO_BGC_3D_REP_015_010
--- old
+++ new
@@ -1,5 +1,5 @@
 {
-    "description": "This product consists of 3D fields of Particulate Organic Carbon (POC), Particulate Backscattering coefficient (bbp), Chlorophyll-a concentration (Chla), Downwelling Photosynthetic Available Radiation (PAR) and downwelling irradiance, at 0.25\u00b0x0.25\u00b0 resolution from the surface to 1000 m. \nA neural network estimates the vertical distribution of Chla and bbp from surface ocean color measurements with hydrological properties and additional drivers. The SOCA-light models is used to integrate light.\n\n**DOI (product):**\nhttps://doi.org/10.48670/moi-00046\n\n**References:**\n\n* Sauzede R., H. Claustre, J. Uitz, C. Jamet, G. Dall\u2019Olmo, F. D\u2019Ortenzio, B. Gentili, A. Poteau, and C. Schmechtig, 2016: A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient, J. Geophys. Res. Oceans, 121, doi:10.1002/2015JC011408.\n",
+    "description": "This product consists of 3D fields of Particulate Organic Carbon (POC), Particulate Backscattering coefficient (bbp), Chlorophyll-a concentration (Chla), Downwelling Photosynthetic Available Radiation (PAR) and downwelling irradiance, at 0.25\u00b0x0.25\u00b0 resolution from the surface to 1000 m. \nA neural network estimates the vertical distribution of Chla and bbp from surface ocean color measurements with hydrological properties and additional drivers. The SOCA-light models is used to integrate light.\n\n**DOI (product):**\nhttps://doi.org/10.48670/moi-00046\n\n**References:**\n\n* Sauzede R., H. Claustre, J. Uitz, C. Jamet, G. Dall\u2019Olmo, F. D\u2019Ortenzio, B. Gentili, A. Poteau, and C. Schmechtig, 2016: A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient, J. Geophys. Res. Oceans, 121, doi:10.1002/2015JC011408.\n* Renosh, P. R., Zhang, J., Sauz\u00e8de, R., & Claustre, H., 2023: Vertically Resolved Global Ocean Light Models Using Machine Learning. Remote Sensing, 15(24), 5663. https://doi.org/10.3390/RS15245663/S1\n",
     "extent": {
         "spatial": {
             "bbox": [
cop_marine - collections_config - OCEANCOLOUR_BAL_BGC_HR_L4_NRT_009_208
--- old
+++ new
@@ -1,5 +1,5 @@
 {
-    "description": "The High-Resolution Ocean Colour (HR-OC) Consortium (Brockmann Consult, Royal Belgian Institute of Natural Sciences, Flemish Institute for Technological Research) distributes Level 4 (L4) Turbidity (TUR, expressed in FNU), Solid Particulate Matter Concentration (SPM, expressed in mg/l), particulate backscattering at 443nm (BBP443, expressed in m-1) and chlorophyll-a concentration (CHL, expressed in \u00b5g/l) for the Sentinel 2/MSI sensor at 100m resolution for a 20km coastal zone. The products are delivered on a geographic lat-lon grid (EPSG:4326). BBP443, constitute the category of the 'optics' products. The  BBP443 product is generated from the L3 RRS products using a quasi-analytical algorithm (Lee et al. 2002). he 'tur_tsm_chl' products include TUR, SPM and CHL. They are retrieved through the application of automated switching algorithms to the RRS spectra adapted to varying water conditions (Novoa et al. 2017). The GEOPHYSICAL product consists of the Chlorophyll-a concentration (CHL) retrieved via a multi-algorithm approach with optimized quality flagging (O'Reilly et al. 2019, Gons et al. 2005, Lavigne et al. 2021). Monthly products (P1M) are temporal aggregates of the daily L3 products. Daily products contain gaps in cloudy areas and where there is no overpass at the respective day. Aggregation collects the non-cloudy (and non-frozen) contributions to each pixel. Contributions are averaged per variable. While this does not guarantee data availability in all pixels in case of persistent clouds, it provides a more complete product compared to the sparsely filled daily products. The Monthly L4 products (P1M) are generally provided withing 4 days after the last acquisition date of the month. Daily gap filled L4 products (P1D) are generated using the DINEOF (Data Interpolating Empirical Orthogonal Functions) approach which reconstructs missing data in geophysical datasets by using a truncated Empirical Orthogonal Functions (EOF) basis in an iterative approach. DINEOF reconstructs missing data in a geophysical dataset by extracting the main patterns of temporal and spatial variability from the data. While originally designed for low resolution data products, recent research has resulted in the optimization of DINEOF to handle high resolution data provided by Sentinel-2 MSI, including cloud shadow detection (Alvera-Azc\u00e1rate et al., 2021). These types of L4 products are generated and delivered one month after the respective period.\n\n\n**Processing information:**\n\nThe HR-OC processing system is deployed on Creodias where Sentinel 2/MSI L1C data are available. The production control element is being hosted within the infrastructure of Brockmann Consult. The processing chain consists of:\n* Resampling to 60m and mosaic generation of the set of Sentinel-2 MSI L1C granules of a single overpass that cover a single UTM zone.\n* Application of  a glint correction taking into account the detector viewing angles\n* Application of a coastal mask with 20km water + 20km land. The result is a L1C mosaic tile with data just in the coastal area optimized for compression.\n* Level 2 processing with pixel identification (IdePix), atmospheric correction (C2RCC and ACOLITE or iCOR), in-water processing and merging (HR-OC L2W processor). The result is a 60m product with the same extent as the L1C mosaic, with variables for optics, transparency, and geophysics, and with data filled in the water part of the coastal area.\n* invalid pixel identification takes into account  corrupted (L1) pixels, clouds, cloud shadow, glint, dry-fallen intertidal flats, coastal mixed-pixels, sea ice, melting ice, floating vegetation, non-water objects, and bottom reflection.\n* Daily L3 aggregation merges all Level 2 mosaics of a day intersecting with a target tile. All valid water pixels are included in the 20km coastal stripes; all other values are set to NaN. There may be more than a single overpass a day, in particular in the northern regions. This step comprises resampling to the 100m target grid. \n* Monthly L4 aggregation combines all Level 3 products of a month and a single tile. The output is a set of 3 NetCDF datasets for (1) optics and (2) turbidity, suspended matter and chlorophyll concentration, respectively for the month.\n* Gap filling combines all daily products of a period and generates (partially) gap-filled daily products again. The output of gap filling are 2 datasets for (1) optics (BBP443 only), (2) turbidity, suspended matter and chlorophyll concentration per day.\n\n**Description of observation methods/instruments:**\n\nOcean colour technique exploits the emerging electromagnetic radiation from the sea surface in different wavelengths. The spectral variability of this signal defines the so-called ocean colour which is affected by the presence of phytoplankton.\n\n\n**Quality / Accuracy / Calibration information:**\n\nA detailed description of the calibration and validation activities performed over this product can be found on the CMEMS web portal and in CMEMS-BGP_HR-QUID-009-201_to_212.\n\n\n**Suitability, Expected type of users / uses:**\n\nThis product is meant for use for educational purposes and for the managing of the marine safety, marine resources, marine and coastal environment and for climate and seasonal studies.\n\n**Dataset names: **\n*cmems_obs_oc_bal_bgc_tur_spm_chl_nrt_l4-hr-mosaic_P1M-v01\n*cmems_obs_oc_bal_bgc_optics_nrt_l4-hr-mosaic_P1M-v01\n*cmems_obs_oc_bal_bgc_tur_spm_chl_nrt_l4-hr-mosaic_P1D-v01\n*cmems_obs_oc_bal_bgc_optics_nrt_l4-hr-mosaic_P1D-v01\n\n**Files format:**\n*netCDF-4, CF-1.7\n*INSPIRE compliant.\n\n**DOI (product):**   \nhttps://doi.org/10.48670/moi-00080\n\n**References:**\n\n* Alvera-Azc\u00e1rate, Aida, et al. (2021), Detection of shadows in high spatial resolution ocean satellite data using DINEOF. Remote Sensing of Environment 253: 112229.\n* Lavigne, H., et al. (2021), Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms applied to coastal waters, Remote Sensing of Environment, in press.\n* Lee, Z. P., et al. (2002), Deriving inherent optical properties from water color: A multi- band quasi-analytical algorithm for optically deep waters, Applied Optics, 41, 5755-5772.\n* Novoa, S., et al. (2017), Atmospheric corrections and multi-conditional algorithm for multi-sensor remote sensing of suspended particulate matter in low-to-high turbidity levels coastal waters. Remote Sens., v. 9, 61.\n* Gons, et al. (2005), Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters, J. Plankton Res., v. 27, n. 1, p. 125-127.\n* O'Reilly, et al. (2019), Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6. Remote Sensing of Environment. 229, 32\u201347.\n",
+    "description": "The High-Resolution Ocean Colour (HR-OC) Consortium (Brockmann Consult, Royal Belgian Institute of Natural Sciences, Flemish Institute for Technological Research) distributes Level 4 (L4) Turbidity (TUR, expressed in FNU), Solid Particulate Matter Concentration (SPM, expressed in mg/l), particulate backscattering at 443nm (BBP443, expressed in m-1) and chlorophyll-a concentration (CHL, expressed in \u00b5g/l) for the Sentinel 2/MSI sensor at 100m resolution for a 20km coastal zone. The products are delivered on a geographic lat-lon grid (EPSG:4326). BBP443, constitute the category of the 'optics' products. The  BBP443 product is generated from the L3 RRS products using a quasi-analytical algorithm (Lee et al. 2002). he 'tur_tsm_chl' products include TUR, SPM and CHL. They are retrieved through the application of automated switching algorithms to the RRS spectra adapted to varying water conditions (Novoa et al. 2017). The geophysical product consists of the Chlorophyll-a concentration (CHL) retrieved via a multi-algorithm approach with optimized quality flagging (O'Reilly et al. 2019, Gons et al. 2005, Lavigne et al. 2021). Monthly products (P1M) are temporal aggregates of the daily L3 products. Daily products contain gaps in cloudy areas and where there is no overpass at the respective day. Aggregation collects the non-cloudy (and non-frozen) contributions to each pixel. Contributions are averaged per variable. While this does not guarantee data availability in all pixels in case of persistent clouds, it provides a more complete product compared to the sparsely filled daily products. The Monthly L4 products (P1M) are generally provided withing 4 days after the last acquisition date of the month. Daily gap filled L4 products (P1D) are generated using the DINEOF (Data Interpolating Empirical Orthogonal Functions) approach which reconstructs missing data in geophysical datasets by using a truncated Empirical Orthogonal Functions (EOF) basis in an iterative approach. DINEOF reconstructs missing data in a geophysical dataset by extracting the main patterns of temporal and spatial variability from the data. While originally designed for low resolution data products, recent research has resulted in the optimization of DINEOF to handle high resolution data provided by Sentinel-2 MSI, including cloud shadow detection (Alvera-Azc\u00e1rate et al., 2021). These types of L4 products are generated and delivered one month after the respective period.\n\n\n**Processing information:**\n\nThe HR-OC processing system is deployed on Creodias where Sentinel 2/MSI L1C data are available. The production control element is being hosted within the infrastructure of Brockmann Consult. The processing chain consists of:\n* Resampling to 60m and mosaic generation of the set of Sentinel-2 MSI L1C granules of a single overpass that cover a single UTM zone.\n* Application of  a glint correction taking into account the detector viewing angles\n* Application of a coastal mask with 20km water + 20km land. The result is a L1C mosaic tile with data just in the coastal area optimized for compression.\n* Level 2 processing with pixel identification (IdePix), atmospheric correction (C2RCC and ACOLITE or iCOR), in-water processing and merging (HR-OC L2W processor). The result is a 60m product with the same extent as the L1C mosaic, with variables for optics, transparency, and geophysics, and with data filled in the water part of the coastal area.\n* invalid pixel identification takes into account  corrupted (L1) pixels, clouds, cloud shadow, glint, dry-fallen intertidal flats, coastal mixed-pixels, sea ice, melting ice, floating vegetation, non-water objects, and bottom reflection.\n* Daily L3 aggregation merges all Level 2 mosaics of a day intersecting with a target tile. All valid water pixels are included in the 20km coastal stripes; all other values are set to NaN. There may be more than a single overpass a day, in particular in the northern regions. This step comprises resampling to the 100m target grid. \n* Monthly L4 aggregation combines all Level 3 products of a month and a single tile. The output is a set of 3 NetCDF datasets for (1) optics and (2) turbidity, suspended matter and chlorophyll concentration, respectively for the month.\n* Gap filling combines all daily products of a period and generates (partially) gap-filled daily products again. The output of gap filling are 2 datasets for (1) optics (BBP443 only), (2) turbidity, suspended matter and chlorophyll concentration per day.\n\n**Description of observation methods/instruments:**\n\nOcean colour technique exploits the emerging electromagnetic radiation from the sea surface in different wavelengths. The spectral variability of this signal defines the so-called ocean colour which is affected by the presence of phytoplankton.\n\n\n**Quality / Accuracy / Calibration information:**\n\nA detailed description of the calibration and validation activities performed over this product can be found on the CMEMS web portal and in CMEMS-BGP_HR-QUID-009-201_to_212.\n\n\n**Suitability, Expected type of users / uses:**\n\nThis product is meant for use for educational purposes and for the managing of the marine safety, marine resources, marine and coastal environment and for climate and seasonal studies.\n\n**Dataset names: **\n*cmems_obs_oc_bal_bgc_tur_spm_chl_nrt_l4-hr-mosaic_P1M-v01\n*cmems_obs_oc_bal_bgc_optics_nrt_l4-hr-mosaic_P1M-v01\n*cmems_obs_oc_bal_bgc_tur_spm_chl_nrt_l4-hr-mosaic_P1D-v01\n*cmems_obs_oc_bal_bgc_optics_nrt_l4-hr-mosaic_P1D-v01\n\n**Files format:**\n*netCDF-4, CF-1.7\n*INSPIRE compliant.\n\n**DOI (product):**   \nhttps://doi.org/10.48670/moi-00080\n\n**References:**\n\n* Alvera-Azc\u00e1rate, Aida, et al. (2021), Detection of shadows in high spatial resolution ocean satellite data using DINEOF. Remote Sensing of Environment 253: 112229.\n* Lavigne, H., et al. (2021), Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms applied to coastal waters, Remote Sensing of Environment, in press.\n* Lee, Z. P., et al. (2002), Deriving inherent optical properties from water color: A multi- band quasi-analytical algorithm for optically deep waters, Applied Optics, 41, 5755-5772.\n* Novoa, S., et al. (2017), Atmospheric corrections and multi-conditional algorithm for multi-sensor remote sensing of suspended particulate matter in low-to-high turbidity levels coastal waters. Remote Sens., v. 9, 61.\n* Gons, et al. (2005), Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters, J. Plankton Res., v. 27, n. 1, p. 125-127.\n* O'Reilly, et al. (2019), Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6. Remote Sensing of Environment. 229, 32\u201347.\n",
     "extent": {
         "spatial": {
             "bbox": [
cop_marine - collections_config - OMI_CLIMATE_OHC_MEDSEA_area_averaged_anomalies
--- old
+++ new
@@ -1,5 +1,5 @@
 {
-    "description": "**DEFINITION**\n\nOcean heat content (OHC) is defined here as the deviation from a reference period (1993-2014) and is closely proportional to the average temperature change from z1 = 0 m to z2 = 700 m depth:\nOHC=\u222b_(z_1)^(z_2)\u03c1_0  c_p (T_yr-T_clim )dz \t\t\t\t\t\t\t\t[1]\nwith a reference density of = 1030 kgm-3 and a specific heat capacity of cp = 3980 J kg-1 \u00b0C-1 (e.g. von Schuckmann et al., 2009).\nTime series of annual mean values area averaged ocean heat content is provided for the Mediterranean Sea (30\u00b0N, 46\u00b0N; 6\u00b0W, 36\u00b0E) and is evaluated for topography deeper than 300m.\n\n**CONTEXT**\n\nKnowing how much and where heat energy is stored and released in the ocean is essential for understanding the contemporary Earth system state, variability and change, as the oceans shape our perspectives for the future.\nThe quality evaluation of MEDSEA_OMI_OHC_area_averaged_anomalies is based on the \u201cmulti-product\u201d approach as introduced in the second issue of the Ocean State Report (von Schuckmann et al., 2018), and following the MyOcean\u2019s experience (Masina et al., 2017). \nSix global products and a regional (Mediterranean Sea) product have been used to build an ensemble mean, and its associated ensemble spread. The reference products are:\n\u2022\tThe Mediterranean Sea Reanalysis at 1/24 degree horizontal resolution (MEDSEA_MULTIYEAR_PHY_006_004, DOI: https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, Escudier et al., 2020)\n\u2022\tFour global reanalyses at 1/4 degree horizontal resolution (GLOBAL_MULTIYEAR_PHY_ENS_001_031): \nGLORYS, C-GLORS, ORAS5, FOAM\n\u2022\tTwo observation based products: \nCORA (INSITU_GLO_PHY_TS_OA_MY_013_052) and \nARMOR3D (MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012). \nDetails on the products are delivered in the PUM and QUID of this OMI. \n\n**CMEMS KEY FINDINGS**\n\nThe ensemble mean ocean heat content anomaly time series over the Mediterranean Sea shows a continuous increase in the period 1993-2022 at rate of 1.38\u00b10.08 W/m2 in the upper 700m. After 2005 the rate has clearly increased with respect the previous decade, in agreement with Iona et al. (2018).\n\n**DOI (product):** \nhttps://doi.org/10.48670/moi-00261\n\n**References:**\n\n* Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cret\u00ed, S., Masina, S., Coppini, G., & Pinardi, N. (2020). Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1\n* Iona, A., A. Theodorou, S. Sofianos, S. Watelet, C. Troupin, J.-M. Beckers, 2018: Mediterranean Sea climatic indices: monitoring long term variability and climate changes, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-51, in review.\n* Masina S., A. Storto, N. Ferry, M. Valdivieso, K. Haines, M. Balmaseda, H. Zuo, M. Drevillon, L. Parent, 2017: An ensemble of eddy-permitting global ocean reanalyses from the MyOcean project. Climate Dynamics, 49 (3): 813-841. DOI: 10.1007/s00382-015-2728-5\n* von Schuckmann, K., F. Gaillard and P.-Y. Le Traon, 2009: Global hydrographic variability patterns during 2003-2008, Journal of Geophysical Research, 114, C09007, doi:10.1029/2008JC005237.\n* von Schuckmann et al., 2016: Ocean heat content. In: The Copernicus Marine Environment Monitoring Service Ocean State Report, issue 1, Journal of Operational Oceanography, Volume 9, 2016 - Issue sup2: The Copernicus Marine Environment Monitoring Service Ocean, http://dx.doi.org/10.1080/1755876X.2016.1273446.\n* von Schuckmann et al., 2018: Ocean heat content. In: The Copernicus Marine Environment Monitoring Service Ocean State Report, issue 2, Journal of Operational Oceanography, 11:sup1, s1-s142, DOI: 10.1080/1755876X.2018.1489208\n",
+    "description": "**DEFINITION**\n\nOcean heat content (OHC) is defined here as the deviation from a reference period (1993-2014) and is closely proportional to the average temperature change from z1 = 0 m to z2 = 700 m depth:\nOHC=\u222b_(z_1)^(z_2)\u03c1_0  c_p (T_yr-T_clim )dz \t\t\t\t\t\t\t\t[1]\nwith a reference density of = 1030 kgm-3 and a specific heat capacity of cp = 3980 J kg-1 \u00b0C-1 (e.g. von Schuckmann et al., 2009).\nTime series of annual mean values area averaged ocean heat content is provided for the Mediterranean Sea (30\u00b0N, 46\u00b0N; 6\u00b0W, 36\u00b0E) and is evaluated for topography deeper than 300m.\n\n**CONTEXT**\n\nKnowing how much and where heat energy is stored and released in the ocean is essential for understanding the contemporary Earth system state, variability and change, as the oceans shape our perspectives for the future.\nThe quality evaluation of MEDSEA_OMI_OHC_area_averaged_anomalies is based on the \u201cmulti-product\u201d approach as introduced in the second issue of the Ocean State Report (von Schuckmann et al., 2018), and following the MyOcean\u2019s experience (Masina et al., 2017). \nSix global products and a regional (Mediterranean Sea) product have been used to build an ensemble mean, and its associated ensemble spread. The reference products are:\n\n\u2022\tThe Mediterranean Sea Reanalysis at 1/24 degree horizontal resolution (MEDSEA_MULTIYEAR_PHY_006_004, DOI: https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, Escudier et al., 2020)\n\n\u2022\tFour global reanalyses at 1/4 degree horizontal resolution (GLOBAL_MULTIYEAR_PHY_ENS_001_031): \nGLORYS, C-GLORS, ORAS5, FOAM\n\n\u2022\tTwo observation based products: \nCORA (INSITU_GLO_PHY_TS_OA_MY_013_052) and \nARMOR3D (MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012). \nDetails on the products are delivered in the PUM and QUID of this OMI. \n\n**CMEMS KEY FINDINGS**\n\nThe ensemble mean ocean heat content anomaly time series over the Mediterranean Sea shows a continuous increase in the period 1993-2022 at rate of 1.38\u00b10.08 W/m2 in the upper 700m. After 2005 the rate has clearly increased with respect the previous decade, in agreement with Iona et al. (2018).\n\n**DOI (product):** \nhttps://doi.org/10.48670/moi-00261\n\n**References:**\n\n* Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cret\u00ed, S., Masina, S., Coppini, G., & Pinardi, N. (2020). Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1\n* Iona, A., A. Theodorou, S. Sofianos, S. Watelet, C. Troupin, J.-M. Beckers, 2018: Mediterranean Sea climatic indices: monitoring long term variability and climate changes, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-51, in review.\n* Masina S., A. Storto, N. Ferry, M. Valdivieso, K. Haines, M. Balmaseda, H. Zuo, M. Drevillon, L. Parent, 2017: An ensemble of eddy-permitting global ocean reanalyses from the MyOcean project. Climate Dynamics, 49 (3): 813-841. DOI: 10.1007/s00382-015-2728-5\n* von Schuckmann, K., F. Gaillard and P.-Y. Le Traon, 2009: Global hydrographic variability patterns during 2003-2008, Journal of Geophysical Research, 114, C09007, doi:10.1029/2008JC005237.\n* von Schuckmann et al., 2016: Ocean heat content. In: The Copernicus Marine Environment Monitoring Service Ocean State Report, issue 1, Journal of Operational Oceanography, Volume 9, 2016 - Issue sup2: The Copernicus Marine Environment Monitoring Service Ocean, http://dx.doi.org/10.1080/1755876X.2016.1273446.\n* von Schuckmann et al., 2018: Ocean heat content. In: The Copernicus Marine Environment Monitoring Service Ocean State Report, issue 2, Journal of Operational Oceanography, 11:sup1, s1-s142, DOI: 10.1080/1755876X.2018.1489208\n",
     "extent": {
         "spatial": {
             "bbox": [
cop_marine - collections_config - OMI_CLIMATE_OSC_MEDSEA_volume_mean
--- old
+++ new
@@ -1,5 +1,5 @@
 {
-    "description": "**DEFINITION**\n\nOcean salt content (OSC) is defined and represented here as the volume average of the integral of salinity in the Mediterranean Sea from z1 = 0 m to z2 = 300 m depth:\n\u00afS=1/V \u222bV S dV\nTime series of annual mean values area averaged ocean salt content are provided for the Mediterranean Sea (30\u00b0N, 46\u00b0N; 6\u00b0W, 36\u00b0E) and are evaluated in the upper 300m excluding the shelf areas close to the coast with a depth less than 300 m. The total estimated volume is approximately 5.7e+5 km3.\n\n**CONTEXT**\n\nThe freshwater input from the land (river runoff) and atmosphere (precipitation) and inflow from the Black Sea and the Atlantic Ocean are balanced by the evaporation in the Mediterranean Sea. Evolution of the salt content may have an impact in the ocean circulation and dynamics which possibly will have implication on the entire Earth climate system. Thus monitoring changes in the salinity content is essential considering its link to changes in: the hydrological cycle, the water masses formation, the regional halosteric sea level and salt/freshwater transport, as well as for their impact on marine biodiversity.\nThe OMI_CLIMATE_OSC_MEDSEA_volume_mean is based on the \u201cmulti-product\u201d approach introduced in the seventh issue of the Ocean State Report (contribution by Aydogdu et al., 2023). Note that the estimates in Aydogdu et al. (2023) are provided monthly while here we evaluate the results per year.\nSix global products and a regional (Mediterranean Sea) product have been used to build an ensemble mean, and its associated ensemble spread. The reference products are:\n\u2022\tThe Mediterranean Sea Reanalysis at 1/24\u00b0horizontal resolution (MEDSEA_MULTIYEAR_PHY_006_004, DOI: https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, Escudier et al., 2020)\n\u2022\tFour global reanalyses at 1/4\u00b0horizontal resolution (GLOBAL_REANALYSIS_PHY_001_031, GLORYS, C-GLORS, ORAS5, FOAM, DOI: https://doi.org/10.48670/moi-00024, Desportes et al., 2022)\n\u2022\tTwo observation-based products: CORA (INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b, DOI:  https://doi.org/10.17882/46219, Szekely et al., 2022) and ARMOR3D (MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, DOI: https://doi.org/10.48670/moi-00052, Grenier et al., 2021). \nDetails on the products are delivered in the PUM and QUID of this OMI.\n\n**CMEMS KEY FINDINGS**\n\nThe Mediterranean Sea salt content shows a positive trend in the upper 300 m with a continuous increase over the period 1993-2021 at rate of 7.0*10-3 \u00b13.1*10-4 psu yr-1. \nThe overall ensemble mean of different products is 38.57 psu. During the early 1990s in the entire Mediterranean Sea there is a large spread in salinity with the observational based datasets showing a higher salinity, while the reanalysis products present relatively lower salinity. The maximum spread between the period 1993\u20132021 occurs in the 1990s with a value of 0.12 psu, and it decreases to as low as 0.02 psu by the end of the 2010s.\n\n**DOI (product):** \nhttps://doi.org/10.48670/mds-00325\n\n**References:**\n\n* Aydogdu, A., Miraglio, P., Escudier, R., Clementi, E., Masina, S.: The dynamical role of upper layer salinity in the Mediterranean Sea, State of the Planet, accepted, 2023.\n* Desportes, C., Garric, G., R\u00e9gnier, C., Dr\u00e9villon, M., Parent, L., Drillet, Y., Masina, S., Storto, A., Mirouze, I., Cipollone, A., Zuo, H., Balmaseda, M., Peterson, D., Wood, R., Jackson, L., Mulet, S., Grenier, E., and Gounou, A.: EU Copernicus Marine Service Quality Information Document for the Global Ocean Ensemble Physics Reanalysis, GLOBAL_REANALYSIS_PHY_001_031, Issue 1.1, Mercator Ocean International, https://documentation.marine.copernicus.eu/QUID/CMEMS-GLO-QUID-001-031.pdf (last access: 3 May 2023), 2022.\n* Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cret\u00ed, S., Masina, S., Coppini, G., & Pinardi, N. (2020).\n* Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1\n* Grenier, E., Verbrugge, N., Mulet, S., and Guinehut, S.: EU Copernicus Marine Service Quality Information Document for the Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD, MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, Issue 1.1, Mercator Ocean International, https://documentation.marine.copernicus.eu/QUID/CMEMS-MOB-QUID-015-012.pdf (last access: 3 May 2023), 2021.\n* Szekely, T.: EU Copernicus Marine Service Quality Information Document for the Global Ocean-Delayed Mode gridded CORA \u2013 In-situ Observations objective analysis in Delayed Mode, INSITU_GLO_PHY_TS_OA_MY_013_052, issue 1.2, Mercator Ocean International, https://documentation.marine.copernicus.eu/QUID/CMEMS-INS-QUID-013-052.pdf (last access: 4 April 2023), 2022.\n",
+    "description": "**DEFINITION**\n\nOcean salt content (OSC) is defined and represented here as the volume average of the integral of salinity in the Mediterranean Sea from z1 = 0 m to z2 = 300 m depth:\n\u00afS=1/V \u222bV S dV\nTime series of annual mean values area averaged ocean salt content are provided for the Mediterranean Sea (30\u00b0N, 46\u00b0N; 6\u00b0W, 36\u00b0E) and are evaluated in the upper 300m excluding the shelf areas close to the coast with a depth less than 300 m. The total estimated volume is approximately 5.7e+5 km3.\n\n**CONTEXT**\n\nThe freshwater input from the land (river runoff) and atmosphere (precipitation) and inflow from the Black Sea and the Atlantic Ocean are balanced by the evaporation in the Mediterranean Sea. Evolution of the salt content may have an impact in the ocean circulation and dynamics which possibly will have implication on the entire Earth climate system. Thus monitoring changes in the salinity content is essential considering its link to changes in: the hydrological cycle, the water masses formation, the regional halosteric sea level and salt/freshwater transport, as well as for their impact on marine biodiversity.\nThe OMI_CLIMATE_OSC_MEDSEA_volume_mean is based on the \u201cmulti-product\u201d approach introduced in the seventh issue of the Ocean State Report (contribution by Aydogdu et al., 2023). Note that the estimates in Aydogdu et al. (2023) are provided monthly while here we evaluate the results per year.\nSix global products and a regional (Mediterranean Sea) product have been used to build an ensemble mean, and its associated ensemble spread. The reference products are:\n\n\u2022\tThe Mediterranean Sea Reanalysis at 1/24\u00b0horizontal resolution (MEDSEA_MULTIYEAR_PHY_006_004, DOI: https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, Escudier et al., 2020)\n\n\u2022\tFour global reanalyses at 1/4\u00b0horizontal resolution (GLOBAL_REANALYSIS_PHY_001_031, GLORYS, C-GLORS, ORAS5, FOAM, DOI: https://doi.org/10.48670/moi-00024, Desportes et al., 2022)\n\n\u2022\tTwo observation-based products: CORA (INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b, DOI:  https://doi.org/10.17882/46219, Szekely et al., 2022) and ARMOR3D (MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, DOI: https://doi.org/10.48670/moi-00052, Grenier et al., 2021). \nDetails on the products are delivered in the PUM and QUID of this OMI.\n\n**CMEMS KEY FINDINGS**\n\nThe Mediterranean Sea salt content shows a positive trend in the upper 300 m with a continuous increase over the period 1993-2021 at rate of 7.0*10-3 \u00b13.1*10-4 psu yr-1. \nThe overall ensemble mean of different products is 38.57 psu. During the early 1990s in the entire Mediterranean Sea there is a large spread in salinity with the observational based datasets showing a higher salinity, while the reanalysis products present relatively lower salinity. The maximum spread between the period 1993\u20132021 occurs in the 1990s with a value of 0.12 psu, and it decreases to as low as 0.02 psu by the end of the 2010s.\n\n**DOI (product):** \nhttps://doi.org/10.48670/mds-00325\n\n**References:**\n\n* Aydogdu, A., Miraglio, P., Escudier, R., Clementi, E., Masina, S.: The dynamical role of upper layer salinity in the Mediterranean Sea, State of the Planet, accepted, 2023.\n* Desportes, C., Garric, G., R\u00e9gnier, C., Dr\u00e9villon, M., Parent, L., Drillet, Y., Masina, S., Storto, A., Mirouze, I., Cipollone, A., Zuo, H., Balmaseda, M., Peterson, D., Wood, R., Jackson, L., Mulet, S., Grenier, E., and Gounou, A.: EU Copernicus Marine Service Quality Information Document for the Global Ocean Ensemble Physics Reanalysis, GLOBAL_REANALYSIS_PHY_001_031, Issue 1.1, Mercator Ocean International, https://documentation.marine.copernicus.eu/QUID/CMEMS-GLO-QUID-001-031.pdf (last access: 3 May 2023), 2022.\n* Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cret\u00ed, S., Masina, S., Coppini, G., & Pinardi, N. (2020).\n* Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1\n* Grenier, E., Verbrugge, N., Mulet, S., and Guinehut, S.: EU Copernicus Marine Service Quality Information Document for the Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD, MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, Issue 1.1, Mercator Ocean International, https://documentation.marine.copernicus.eu/QUID/CMEMS-MOB-QUID-015-012.pdf (last access: 3 May 2023), 2021.\n* Szekely, T.: EU Copernicus Marine Service Quality Information Document for the Global Ocean-Delayed Mode gridded CORA \u2013 In-situ Observations objective analysis in Delayed Mode, INSITU_GLO_PHY_TS_OA_MY_013_052, issue 1.2, Mercator Ocean International, https://documentation.marine.copernicus.eu/QUID/CMEMS-INS-QUID-013-052.pdf (last access: 4 April 2023), 2022.\n",
     "extent": {
         "spatial": {
             "bbox": [
cop_marine - collections_config - OMI_EXTREME_SL_IBI_slev_mean_and_anomaly_obs
--- old
+++ new
@@ -1,5 +1,5 @@
 {
-    "description": "**DEFINITION**\n\nThe OMI_EXTREME_SL_IBI_slev_mean_and_anomaly_obs indicator is based on the computation of the 99th and the 1st percentiles from in situ data (observations). It is computed for the variable sea level measured by tide gauges along the coast. The use of percentiles instead of annual maximum and minimum values, makes this extremes study less affected by individual data measurement errors. The annual percentiles referred to annual mean sea level are temporally averaged and their spatial evolution is displayed in the dataset omi_extreme_sl_ibi_slev_mean_and_anomaly_obs, jointly with the anomaly in the target year. This study of extreme variability was first applied to sea level variable (P\u00e9rez G\u00f3mez et al 2016) and then extended to other essential variables, sea surface temperature and significant wave height (P\u00e9rez G\u00f3mez et al 2018).\n\n**CONTEXT**\nSea level (SLEV) is one of the Essential Ocean Variables most affected by climate change. Global mean sea level rise has accelerated since the 1990\u2019s (Abram et al., 2019, Legeais et al., 2020), due to the increase of ocean temperature and mass volume caused by land ice melting (WCRP, 2018). Basin scale oceanographic and meteorological features lead to regional variations of this trend that combined with changes in the frequency and intensity of storms could also rise extreme sea levels up to one meter by the end of the century (Vousdoukas et al., 2020, Tebaldi et al., 2021). This will significantly increase coastal vulnerability to storms, with important consequences on the extent of flooding events, coastal erosion and damage to infrastructures caused by waves (Boumis et al., 2023). The increase in extreme sea levels over recent decades is, therefore, primarily due to the rise in mean sea level. Note, however, that the methodology used to compute this OMI removes the annual 50th percentile, thereby discarding the mean sea level trend to isolate changes in storminess.   \nThe Iberian Biscay Ireland region shows positive sea level trend modulated by decadal-to-multidecadal variations driven by ocean dynamics and superposed to the long-term trend (Chafik et al., 2019).\n\n**COPERNICUS MARINE SERVICE KEY FINDINGS**\nThe completeness index criteria is fulfilled by 62 stations in 2023, five more than those available in 2022 (57), recently added to the multi-year product INSITU_GLO_PHY_SSH_DISCRETE_MY_013_053. The mean 99th percentiles reflect the great tide spatial variability around the UK and the north of France. Minimum values are observed in the Irish eastern coast (e.g.: 0.66 m above mean sea level in Arklow Harbour) and the Canary Islands (e.g.: 0.93 and 0.96 m above mean sea level in Gomera and Hierro, respectively). Maximum values are observed in the Bristol Channel (e.g.: 6.25 and 5.78 m above mean sea level in Newport and Hinkley, respectively), and in the English Channel (e.g.: 5.16 m above mean sea level in St. Helier). The annual 99th percentiles standard deviation reflects the south-north increase of storminess, ranging between 1-3 cm in the Canary Islands to 15 cm in Hinkley (Bristol Channel). Negative or close to zero anomalies of 2023 99th percentile prevail throughout the region this year, reaching < -20 cm in several stations of the UK western coast and the English Channel (e.g.: -22 cm in Newport; -21 cm in St.Helier). Significantly positive anomaly of 2023 99th percentile is only found in Arcklow Harbour, in the eastern Irish coast. \n\n**DOI (product):** \nhttps://doi.org/10.48670/moi-00253\n\n**References:**\n\n* Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M. P., Crate, S., Enomoto, H., Garschagen, M., Gruber, N., Harper, S., Holland, E., Kudela, R. M., Rice, J., Steffen, K., & von Schuckmann, K. (2019). Framing and Context of the Report. In H. O. P\u00f6rtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegr\u00eda, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 73\u2013129). in press. https://www.ipcc.ch/srocc/\n* Legeais J-F, W. Llowel, A. Melet and B. Meyssignac: Evidence of the TOPEX-A Altimeter Instrumental Anomaly and Acceleration of the Global Mean Sea Level, in Copernicus Marine Service Ocean State Report, Issue 4, Journal of Operational Oceanography, 2020, accepted.\n* P\u00e9rez-G\u00f3mez B, \u00c1lvarez-Fanjul E, She J, P\u00e9rez-Gonz\u00e1lez I, Manzano F. 2016. Extreme sea level events, Section 4.4, p:300. In: Von Schuckmann K, Le Traon PY, Alvarez-Fanjul E, Axell L, Balmaseda M, Breivik LA, Brewin RJW, Bricaud C, Drevillon M, Drillet Y, Dubois C , Embury O, Etienne H, Garc\u00eda-Sotillo M, Garric G, Gasparin F, Gutknecht E, Guinehut S, Hernandez F, Juza M, Karlson B, Korres G, Legeais JF, Levier B, Lien VS, Morrow R, Notarstefano G, Parent L, Pascual A, P\u00e9rez-G\u00f3mez B, Perruche C, Pinardi N, Pisano A, Poulain PM , Pujol IM, Raj RP, Raudsepp U, Roquet H, Samuelsen A, Sathyendranath S, She J, Simoncelli S, Solidoro C, Tinker J, Tintor\u00e9 J, Viktorsson L, Ablain M, Almroth-Rosell E, Bonaduce A, Clementi E, Cossarini G, Dagneaux Q, Desportes C, Dye S, Fratianni C, Good S, Greiner E, Gourrion J, Hamon M, Holt J, Hyder P, Kennedy J, Manzano-Mu\u00f1oz F, Melet A, Meyssignac B, Mulet S, Nardelli BB, O\u2019Dea E, Olason E, Paulmier A, P\u00e9rez-Gonz\u00e1lez I, Reid R, Racault MF, Raitsos DE, Ramos A, Sykes P, Szekely T, Verbrugge N. 2016. The Copernicus Marine Environment Monitoring Service Ocean State Report, Journal of Operational Oceanography. 9 (sup2): 235-320. http://dx.doi.org/10.1080/1755876X.2016.1273446\n* P\u00e9rez G\u00f3mez B, De Alfonso M, Zacharioudaki A, P\u00e9rez Gonz\u00e1lez I, \u00c1lvarez Fanjul E, M\u00fcller M, Marcos M, Manzano F, Korres G, Ravdas M, Tamm S. 2018. Sea level, SST and waves: extremes variability. In: Copernicus Marine Service Ocean State Report, Issue 2, Journal of Operational Oceanography, 11:sup1, Chap. 3.1, s79\u2013s88, DOI: https://doi.org/10.1080/1755876X.2018.1489208.\n* WCRP Global Sea Level Budget Group: Global sea-level budget 1993\u2013present. 2018. Earth Syst. Sci. Data, 10, 1551-1590, https://doi.org/10.5194/essd-10-1551-2018.\n* Vousdoukas MI, Mentaschi L, Hinkel J, et al. 2020. Economic motivation for raising coastal flood defenses in Europe. Nat Commun 11, 2119 (2020). https://doi.org/10.1038/s41467-020-15665-3.\n* Tebaldi, C., Ranasinghe, R., Vousdoukas, M. et al. 2021. Extreme sea levels at different global warming levels. Nat. Clim. Chang. 11, 746\u2013751. https://doi.org/10.1038/s41558-021-01127-1. Tebaldi, C., Ranasinghe, R., Vousdoukas, M. et al. Author Correction: Extreme sea levels at different global warming levels. Nat. Clim. Chang. 13, 588 (2023). https://doi.org/10.1038/s41558-023-01665-w.\n* Boumis, G., Moftakhari, H. R., & Moradkhani, H. 2023. Coevolution of extreme sea levels and sea-level rise under global warming. Earth's Future, 11, e2023EF003649. https://doi. org/10.1029/2023EF003649.\n* Chafik L, Nilsen JE\u00d8, Dangendorf S et al. 2019. North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era. Sci Rep 9, 1041. https://doi.org/10.1038/s41598-018-37603-6\n",
+    "description": "**DEFINITION**\n\nThe OMI_EXTREME_SL_IBI_slev_mean_and_anomaly_obs indicator is based on the computation of the 99th and the 1st percentiles from in situ data (observations). It is computed for the variable sea level measured by tide gauges along the coast. The use of percentiles instead of annual maximum and minimum values, makes this extremes study less affected by individual data measurement errors. The annual percentiles referred to annual mean sea level are temporally averaged and their spatial evolution is displayed in the dataset omi_extreme_sl_ibi_slev_mean_and_anomaly_obs, jointly with the anomaly in the target year. This study of extreme variability was first applied to sea level variable (P\u00e9rez G\u00f3mez et al 2016) and then extended to other essential variables, sea surface temperature and significant wave height (P\u00e9rez G\u00f3mez et al 2018).\n\n**CONTEXT**\n\nSea level (SLEV) is one of the Essential Ocean Variables most affected by climate change. Global mean sea level rise has accelerated since the 1990\u2019s (Abram et al., 2019, Legeais et al., 2020), due to the increase of ocean temperature and mass volume caused by land ice melting (WCRP, 2018). Basin scale oceanographic and meteorological features lead to regional variations of this trend that combined with changes in the frequency and intensity of storms could also rise extreme sea levels up to one meter by the end of the century (Vousdoukas et al., 2020, Tebaldi et al., 2021). This will significantly increase coastal vulnerability to storms, with important consequences on the extent of flooding events, coastal erosion and damage to infrastructures caused by waves (Boumis et al., 2023). The increase in extreme sea levels over recent decades is, therefore, primarily due to the rise in mean sea level. Note, however, that the methodology used to compute this OMI removes the annual 50th percentile, thereby discarding the mean sea level trend to isolate changes in storminess.   \nThe Iberian Biscay Ireland region shows positive sea level trend modulated by decadal-to-multidecadal variations driven by ocean dynamics and superposed to the long-term trend (Chafik et al., 2019).\n\n**COPERNICUS MARINE SERVICE KEY FINDINGS**\n\nThe completeness index criteria is fulfilled by 62 stations in 2023, five more than those available in 2022 (57), recently added to the multi-year product INSITU_GLO_PHY_SSH_DISCRETE_MY_013_053. The mean 99th percentiles reflect the great tide spatial variability around the UK and the north of France. Minimum values are observed in the Irish eastern coast (e.g.: 0.66 m above mean sea level in Arklow Harbour) and the Canary Islands (e.g.: 0.93 and 0.96 m above mean sea level in Gomera and Hierro, respectively). Maximum values are observed in the Bristol Channel (e.g.: 6.25 and 5.78 m above mean sea level in Newport and Hinkley, respectively), and in the English Channel (e.g.: 5.16 m above mean sea level in St. Helier). The annual 99th percentiles standard deviation reflects the south-north increase of storminess, ranging between 1-3 cm in the Canary Islands to 15 cm in Hinkley (Bristol Channel). Negative or close to zero anomalies of 2023 99th percentile prevail throughout the region this year, reaching < -20 cm in several stations of the UK western coast and the English Channel (e.g.: -22 cm in Newport; -21 cm in St.Helier). Significantly positive anomaly of 2023 99th percentile is only found in Arcklow Harbour, in the eastern Irish coast. \n\n**DOI (product):** \nhttps://doi.org/10.48670/moi-00253\n\n**References:**\n\n* Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M. P., Crate, S., Enomoto, H., Garschagen, M., Gruber, N., Harper, S., Holland, E., Kudela, R. M., Rice, J., Steffen, K., & von Schuckmann, K. (2019). Framing and Context of the Report. In H. O. P\u00f6rtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegr\u00eda, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 73\u2013129). in press. https://www.ipcc.ch/srocc/\n* Legeais J-F, W. Llowel, A. Melet and B. Meyssignac: Evidence of the TOPEX-A Altimeter Instrumental Anomaly and Acceleration of the Global Mean Sea Level, in Copernicus Marine Service Ocean State Report, Issue 4, Journal of Operational Oceanography, 2020, accepted.\n* P\u00e9rez-G\u00f3mez B, \u00c1lvarez-Fanjul E, She J, P\u00e9rez-Gonz\u00e1lez I, Manzano F. 2016. Extreme sea level events, Section 4.4, p:300. In: Von Schuckmann K, Le Traon PY, Alvarez-Fanjul E, Axell L, Balmaseda M, Breivik LA, Brewin RJW, Bricaud C, Drevillon M, Drillet Y, Dubois C , Embury O, Etienne H, Garc\u00eda-Sotillo M, Garric G, Gasparin F, Gutknecht E, Guinehut S, Hernandez F, Juza M, Karlson B, Korres G, Legeais JF, Levier B, Lien VS, Morrow R, Notarstefano G, Parent L, Pascual A, P\u00e9rez-G\u00f3mez B, Perruche C, Pinardi N, Pisano A, Poulain PM , Pujol IM, Raj RP, Raudsepp U, Roquet H, Samuelsen A, Sathyendranath S, She J, Simoncelli S, Solidoro C, Tinker J, Tintor\u00e9 J, Viktorsson L, Ablain M, Almroth-Rosell E, Bonaduce A, Clementi E, Cossarini G, Dagneaux Q, Desportes C, Dye S, Fratianni C, Good S, Greiner E, Gourrion J, Hamon M, Holt J, Hyder P, Kennedy J, Manzano-Mu\u00f1oz F, Melet A, Meyssignac B, Mulet S, Nardelli BB, O\u2019Dea E, Olason E, Paulmier A, P\u00e9rez-Gonz\u00e1lez I, Reid R, Racault MF, Raitsos DE, Ramos A, Sykes P, Szekely T, Verbrugge N. 2016. The Copernicus Marine Environment Monitoring Service Ocean State Report, Journal of Operational Oceanography. 9 (sup2): 235-320. http://dx.doi.org/10.1080/1755876X.2016.1273446\n* P\u00e9rez G\u00f3mez B, De Alfonso M, Zacharioudaki A, P\u00e9rez Gonz\u00e1lez I, \u00c1lvarez Fanjul E, M\u00fcller M, Marcos M, Manzano F, Korres G, Ravdas M, Tamm S. 2018. Sea level, SST and waves: extremes variability. In: Copernicus Marine Service Ocean State Report, Issue 2, Journal of Operational Oceanography, 11:sup1, Chap. 3.1, s79\u2013s88, DOI: https://doi.org/10.1080/1755876X.2018.1489208.\n* WCRP Global Sea Level Budget Group: Global sea-level budget 1993\u2013present. 2018. Earth Syst. Sci. Data, 10, 1551-1590, https://doi.org/10.5194/essd-10-1551-2018.\n* Vousdoukas MI, Mentaschi L, Hinkel J, et al. 2020. Economic motivation for raising coastal flood defenses in Europe. Nat Commun 11, 2119 (2020). https://doi.org/10.1038/s41467-020-15665-3.\n* Tebaldi, C., Ranasinghe, R., Vousdoukas, M. et al. 2021. Extreme sea levels at different global warming levels. Nat. Clim. Chang. 11, 746\u2013751. https://doi.org/10.1038/s41558-021-01127-1. Tebaldi, C., Ranasinghe, R., Vousdoukas, M. et al. Author Correction: Extreme sea levels at different global warming levels. Nat. Clim. Chang. 13, 588 (2023). https://doi.org/10.1038/s41558-023-01665-w.\n* Boumis, G., Moftakhari, H. R., & Moradkhani, H. 2023. Coevolution of extreme sea levels and sea-level rise under global warming. Earth's Future, 11, e2023EF003649. https://doi. org/10.1029/2023EF003649.\n* Chafik L, Nilsen JE\u00d8, Dangendorf S et al. 2019. North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era. Sci Rep 9, 1041. https://doi.org/10.1038/s41598-018-37603-6\n",
     "extent": {
         "spatial": {
             "bbox": [
cop_marine - collections_config - OMI_EXTREME_WAVE_BLKSEA_wave_power
--- old
+++ new
@@ -1,5 +1,5 @@
 {
-    "description": "**DEFINITION**\n\nThe Wave Power P is defined by:\nP=(\u03c1g^2)/64\u03c0 H_s^2 T_e\nwhere \u03c1 is the surface water density, g the acceleration due to gravity, Hs the significant wave height (VHM0), and Te the wave energy period (VTM10) also abbreviated with Tm-10 based on the Black Sea wave model reanalysis (product BLKSEA_MULTIYEAR_WAV_007_006). The extreme statistics and related recent changes are defined by (1) the 99th percentile of the Wave Power, (2) the linear trend of 99th percentile of the Wave Power, and (3) the difference (anomaly) of the 99th percentile of the last available year in the multiyear dataset compared against the long-term average as presented in Staneva et al. (2022). The statistics are based on the period 1950 to -18M and are obtained from yearly averages.\n\n**CONTEXT**\nIn the last decade, the European seas have been hit by severe storms, causing serious damage to offshore infrastructure and coastal zones and drawing public attention to the importance of having reliable and comprehensive wave forecasts/hindcasts, especially during extreme events. In addition, human activities such as the offshore wind power industry, the oil industry, and coastal recreation regularly require climate and operational information on maximum wave height at a high resolution in space and time. Thus, there is a broad consensus that a high-quality wave climatology and predictions and a deep understanding of extreme waves caused by storms could substantially contribute to coastal risk management and protection measures, thereby preventing or minimising human and material damage and losses. In this respect, the Wave Power is a crucial quantity to plan and operate wave energy converters (WEC) and for coastal and offshore structures. For both reliable estimates of long-term Wave Power extremes are important to secure a high efficiency and to guarantee a robust and secure design, respectively.\n\n**KEY FINDINGS**\nThe 99th percentile of wave power mean patterns are overall consistent with the respective significant wave height pattern. The maximum 99th percentile of wave power is observed in the southwestern Black Sea. Typical values of in the eastern basin are ~20 kW/m and in the western basin ~45 kW/m. The trend of the 99th percentile of the wave power is decreasing with an average value of 38 W/m/year and a maximum of 100 W/m/year, which is equivalent to a ~10-15% decrease over whole period with respect to the mean. The pattern of the anomaly of the 99th percentile of wave power in 2023 correlates well with that of the wind speed anomaly in 2023, revealing a clear positive wave power anomaly in vast regions of the Black Sea basin (8.5 kW/m on spatial average) with the maxima in the southern half of the domain indicating higher waves in 2023 compared to the average.\n\n**DOI (product):** \nhttps://doi.org/10.48670/mds-00350\n\n**References:**\n\n* Staneva, J., Ricker, M., Akp\u0131nar, A., Behrens, A., Giesen, R., & von Schuckmann, K. (2022): Long-term interannual changes in extreme winds and waves in the Black Sea. Copernicus Ocean State Report, Issue 6, Journal of Operational Oceanography, 15:suppl, 1-220, S.2.8., 64-72, doi:10.1080/1755876X.2022.2095169\n",
+    "description": "**DEFINITION**\n\nThe Wave Power P is defined by:\nP=(\u03c1g^2)/64\u03c0 H_s^2 T_e\nwhere \u03c1 is the surface water density, g the acceleration due to gravity, Hs the significant wave height (VHM0), and Te the wave energy period (VTM10) also abbreviated with Tm-10 based on the Black Sea wave model reanalysis (product BLKSEA_MULTIYEAR_WAV_007_006). The extreme statistics and related recent changes are defined by (1) the 99th percentile of the Wave Power, (2) the linear trend of 99th percentile of the Wave Power, and (3) the difference (anomaly) of the 99th percentile of the last available year in the multiyear dataset compared against the long-term average as presented in Staneva et al. (2022). The statistics are based on the period 1950 to -18M and are obtained from yearly averages.\n\n**CONTEXT**\n\nIn the last decade, the European seas have been hit by severe storms, causing serious damage to offshore infrastructure and coastal zones and drawing public attention to the importance of having reliable and comprehensive wave forecasts/hindcasts, especially during extreme events. In addition, human activities such as the offshore wind power industry, the oil industry, and coastal recreation regularly require climate and operational information on maximum wave height at a high resolution in space and time. Thus, there is a broad consensus that a high-quality wave climatology and predictions and a deep understanding of extreme waves caused by storms could substantially contribute to coastal risk management and protection measures, thereby preventing or minimising human and material damage and losses. In this respect, the Wave Power is a crucial quantity to plan and operate wave energy converters (WEC) and for coastal and offshore structures. For both reliable estimates of long-term Wave Power extremes are important to secure a high efficiency and to guarantee a robust and secure design, respectively.\n\n**KEY FINDINGS**\n\nThe 99th percentile of wave power mean patterns are overall consistent with the respective significant wave height pattern. The maximum 99th percentile of wave power is observed in the southwestern Black Sea. Typical values of in the eastern basin are ~20 kW/m and in the western basin ~45 kW/m. The trend of the 99th percentile of the wave power is decreasing with an average value of 38 W/m/year and a maximum of 100 W/m/year, which is equivalent to a ~10-15% decrease over whole period with respect to the mean. The pattern of the anomaly of the 99th percentile of wave power in 2023 correlates well with that of the wind speed anomaly in 2023, revealing a clear positive wave power anomaly in vast regions of the Black Sea basin (8.5 kW/m on spatial average) with the maxima in the southern half of the domain indicating higher waves in 2023 compared to the average.\n\n**DOI (product):** \nhttps://doi.org/10.48670/mds-00350\n\n**References:**\n\n* Staneva, J., Ricker, M., Akp\u0131nar, A., Behrens, A., Giesen, R., & von Schuckmann, K. (2022): Long-term interannual changes in extreme winds and waves in the Black Sea. Copernicus Ocean State Report, Issue 6, Journal of Operational Oceanography, 15:suppl, 1-220, S.2.8., 64-72, doi:10.1080/1755876X.2022.2095169\n",
     "extent": {
         "spatial": {
             "bbox": [
cop_marine - collections_config - OMI_HEALTH_TEMPSALOXY_BALTIC_mbi_sto2tz_gotland
--- old
+++ new
@@ -1,5 +1,5 @@
 {
-    "description": "\"_DEFINITION_'\n\nMajor Baltic inflow time/depth evolution S,T,O2 ocean monitoring indicator was introduced in Copernicus Marine Service Ocean State Report, Issue 2 (Raudsepp et al, 2018) and is derived from in-situ observations product INSITU_BAL_PHYBGCWAV_DISCRETE_MYNRT_013_032. Major Baltic Inflows bring large volumes of saline and oxygen-rich water into the bottom layers of the deep basins of the central Baltic Sea, i.e. the Gotland Basin. These Major Baltic Inflows occur seldom, sometimes many years apart (Mohrholz, 2018). The Major Baltic Inflow OMI consists of the time series of the bottom layer salinity in the Arkona Basin and in the Bornholm Basin (OMI_HEALTH_TEMPSALOXY_BALTIC_mbi_bottom_salinity_arkona_bornholm) and the time-depth plot of temperature, salinity and dissolved oxygen concentration in the Gotland Basin. Temperature, salinity and dissolved oxygen profiles in the Gotland Basin enable us to estimate the amount of the Major Baltic Inflow water that has reached central Baltic, the depth interval of which has been the most affected, and how much the oxygen conditions have been improved. \n\n**CONTEXT**\n\nThe Baltic Sea is a huge brackish water basin in Northern Europe whose salinity is controlled by its freshwater budget and by the water exchange with the North Sea (e.g. Neumann et al., 2017). This implies that fresher water lies on top of water with higher salinity. The saline water inflows to the Baltic Sea through the Danish Straits, especially the Major Baltic Inflows, shape hydrophysical conditions in the Gotland Basin of the central Baltic Sea, which in turn have a substantial influence on marine ecology on different trophic levels (Bergen et al., 2018; Raudsepp et al.,2019). In the absence of the Major Baltic Inflows, oxygen in the deeper layers of the Gotland Basin is depleted and replaced by hydrogen sulphide (e.g., Savchuk, 2018). As the Baltic Sea is connected to the North Sea only through very narrow and shallow channels in the Danish Straits, inflows of high salinity and oxygenated water into the Baltic occur only intermittently (e.g., Mohrholz, 2018). Long-lasting periods of oxygen depletion in the deep layers of the central Baltic Sea accompanied by a salinity decline and overall weakening of the vertical stratification are referred to as stagnation periods. Extensive stagnation periods occurred in the 1920s/1930s, in the 1950s/1960s and in the 1980s/beginning of 1990s (Lehmann et al., 20225).\n\n\n**KEY FINDINGS**\n\nThe Major Baltic Inflows of 1993, 2002, and 2014 (OMI_HEALTH_TEMPSALOXY_BALTIC_mbi_bottom_salinity_arkona_bornholm) present a distinct signal in the Gotland Basin, influencing water salinity, temperature, and dissolved oxygen up to a depth of 100 meters. Following each event, deep layer salinity in the Gotland Basin increases, reaching peak bottom salinities approximately 1.5 years later, with elevated salinity levels persisting for about three years. Post-2017, salinity below 150 meters has declined, while the halocline has risen, suggesting saline water movement to the Gotland Basin's intermediate layers. Typically, temperatures fall immediately after a Major Baltic Inflow, indicating the descent of cold water from nearby upstream regions to the Gotland Deep's bottom. From 1993 to 1997, deep water temperatures remained relatively low (below 6 \u00b0C). Since 1998, these waters have warmed, with even moderate inflows in 1997/98, 2006/07, and

@github-actions github-actions bot force-pushed the external-collections-ref-update branch 13 times, most recently from 88c40be to 1665ad7 Compare December 4, 2025 15:25
@github-actions github-actions bot force-pushed the external-collections-ref-update branch from 1665ad7 to 5515289 Compare December 4, 2025 15:31
@sbrunato sbrunato merged commit 0c7dfab into develop Dec 4, 2025
@sbrunato sbrunato deleted the external-collections-ref-update branch December 4, 2025 15:34
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants