|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "Function is:\n", |
| 17 | + "\n", |
| 18 | + "$$ f(x_0, x_1) = \\sin(x_0) (x_0 + x_1) $$\n", |
| 19 | + "\n", |
| 20 | + "or broken down\n", |
| 21 | + "\n", |
| 22 | + "$$ \\begin{align}\n", |
| 23 | + "z_0 &= x_0 \\\\\n", |
| 24 | + "z_1 &= x_1 \\\\\n", |
| 25 | + "z_2 &= \\sin(z_0) \\\\\n", |
| 26 | + "z_3 &= z_0 + z_1 \\\\\n", |
| 27 | + "z_4 &= z_2 z_3 \\\\\n", |
| 28 | + "\\end{align} $$\n", |
| 29 | + "\n", |
| 30 | + "Its symbolic derivative is:\n", |
| 31 | + "\n", |
| 32 | + "$$ \\nabla f(x_0, x_1) = \\begin{bmatrix}\n", |
| 33 | + "\\cos(x_0) (x_0 + x_1) + \\sin(x_0) \\\\\n", |
| 34 | + "\\sin(x_0)\n", |
| 35 | + "\\end{bmatrix} $$" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 2, |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "def f(x_0, x_1):\n", |
| 45 | + " return np.sin(x_0) * (x_0 + x_1)\n", |
| 46 | + "\n", |
| 47 | + "def f_grad(x_0, x_1):\n", |
| 48 | + " return np.array([\n", |
| 49 | + " np.cos(x_0) * (x_0 + x_1) + np.sin(x_0),\n", |
| 50 | + " np.sin(x_0),\n", |
| 51 | + " ])" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": 3, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "compute_graph = [\n", |
| 61 | + " (\"inp\", (0,)), # 0\n", |
| 62 | + " (\"inp\", (1,)), # 1\n", |
| 63 | + " (\"sin\", (0,)), # 2\n", |
| 64 | + " (\"add\", (0, 1)), # 3\n", |
| 65 | + " (\"mul\", (2, 3)), # 4\n", |
| 66 | + "]" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": 4, |
| 72 | + "metadata": {}, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "fn_library = {\n", |
| 76 | + " \"inp\": lambda x: x,\n", |
| 77 | + " \"sin\": lambda x: np.sin(x),\n", |
| 78 | + " \"add\": lambda x, y: x + y,\n", |
| 79 | + " \"mul\": lambda x, y: x * y,\n", |
| 80 | + "}" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": 5, |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "def compute(graph, inputs):\n", |
| 90 | + " values = list(inputs)\n", |
| 91 | + " for operation, indices in graph:\n", |
| 92 | + " if operation == \"inp\":\n", |
| 93 | + " continue\n", |
| 94 | + " args = [values[index] for index in indices]\n", |
| 95 | + " result = fn_library[operation](*args)\n", |
| 96 | + " values.append(result)\n", |
| 97 | + " \n", |
| 98 | + " return values[-1]" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": 6, |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "SAMPLE_INPUT = (0.6, 1.4)" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 7, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [ |
| 115 | + { |
| 116 | + "data": { |
| 117 | + "text/plain": [ |
| 118 | + "1.1292849467900707" |
| 119 | + ] |
| 120 | + }, |
| 121 | + "execution_count": 7, |
| 122 | + "metadata": {}, |
| 123 | + "output_type": "execute_result" |
| 124 | + } |
| 125 | + ], |
| 126 | + "source": [ |
| 127 | + "f(*SAMPLE_INPUT)" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 8, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [ |
| 135 | + { |
| 136 | + "data": { |
| 137 | + "text/plain": [ |
| 138 | + "1.1292849467900707" |
| 139 | + ] |
| 140 | + }, |
| 141 | + "execution_count": 8, |
| 142 | + "metadata": {}, |
| 143 | + "output_type": "execute_result" |
| 144 | + } |
| 145 | + ], |
| 146 | + "source": [ |
| 147 | + "compute(compute_graph, SAMPLE_INPUT)" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": 9, |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "def inp_backprop_rule(x):\n", |
| 157 | + " z = x\n", |
| 158 | + "\n", |
| 159 | + " def inp_pullback(z_cotangent):\n", |
| 160 | + " x_cotangent = z_cotangent\n", |
| 161 | + " return (x_cotangent,)\n", |
| 162 | + " \n", |
| 163 | + " return z, inp_pullback\n", |
| 164 | + "\n", |
| 165 | + "def sin_backprop_rule(x):\n", |
| 166 | + " z = np.sin(x)\n", |
| 167 | + "\n", |
| 168 | + " def sin_pullback(z_cotangent):\n", |
| 169 | + " x_cotangent = np.cos(x) * z_cotangent\n", |
| 170 | + " return (x_cotangent,)\n", |
| 171 | + " \n", |
| 172 | + " return z, sin_pullback\n", |
| 173 | + "\n", |
| 174 | + "def add_backprop_rule(x, y):\n", |
| 175 | + " z = x + y\n", |
| 176 | + "\n", |
| 177 | + " def add_pullback(z_cotangent):\n", |
| 178 | + " x_cotangent = z_cotangent\n", |
| 179 | + " y_cotangent = z_cotangent\n", |
| 180 | + "\n", |
| 181 | + " return (x_cotangent, y_cotangent)\n", |
| 182 | + " \n", |
| 183 | + " return z, add_pullback\n", |
| 184 | + "\n", |
| 185 | + "def mul_backprop_rule(x, y):\n", |
| 186 | + " z = x * y\n", |
| 187 | + "\n", |
| 188 | + " def mul_pullback(z_cotangent):\n", |
| 189 | + " x_cotangent = y * z_cotangent\n", |
| 190 | + " y_cotangent = x * z_cotangent\n", |
| 191 | + " return (x_cotangent, y_cotangent)\n", |
| 192 | + " \n", |
| 193 | + " return z, mul_pullback" |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "cell_type": "code", |
| 198 | + "execution_count": 10, |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [], |
| 201 | + "source": [ |
| 202 | + "backprop_library = {\n", |
| 203 | + " \"inp\": inp_backprop_rule,\n", |
| 204 | + " \"sin\": sin_backprop_rule,\n", |
| 205 | + " \"add\": add_backprop_rule,\n", |
| 206 | + " \"mul\": mul_backprop_rule,\n", |
| 207 | + "}" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": 11, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [], |
| 215 | + "source": [ |
| 216 | + "def vjp(graph, inputs):\n", |
| 217 | + " values = list(inputs)\n", |
| 218 | + " pullback_stack = []\n", |
| 219 | + "\n", |
| 220 | + " # Forward pass\n", |
| 221 | + " for operation, indices in graph:\n", |
| 222 | + " if operation == \"inp\":\n", |
| 223 | + " continue\n", |
| 224 | + " args = [values[index] for index in indices]\n", |
| 225 | + " result, pullback_fn = backprop_library[operation](*args)\n", |
| 226 | + " values.append(result)\n", |
| 227 | + " pullback_stack.append((pullback_fn, indices))\n", |
| 228 | + "\n", |
| 229 | + " def pullback(output_cotangent):\n", |
| 230 | + " cotangent_values = np.zeros(len(values))\n", |
| 231 | + " cotangent_values[-1] = output_cotangent\n", |
| 232 | + "\n", |
| 233 | + " for i, (pullback_fn, indices) in enumerate(reversed(pullback_stack)):\n", |
| 234 | + " current_cotangent_value = cotangent_values[-1 - i]\n", |
| 235 | + " cotangent_args = pullback_fn(current_cotangent_value)\n", |
| 236 | + " for index, cotangent in zip(indices, cotangent_args):\n", |
| 237 | + " cotangent_values[index] += cotangent\n", |
| 238 | + " \n", |
| 239 | + " return cotangent_values[:len(inputs)]\n", |
| 240 | + " \n", |
| 241 | + " return values[-1], pullback\n", |
| 242 | + " " |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": 12, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [], |
| 250 | + "source": [ |
| 251 | + "out, back_fn = vjp(compute_graph, SAMPLE_INPUT)" |
| 252 | + ] |
| 253 | + }, |
| 254 | + { |
| 255 | + "cell_type": "code", |
| 256 | + "execution_count": 13, |
| 257 | + "metadata": {}, |
| 258 | + "outputs": [ |
| 259 | + { |
| 260 | + "data": { |
| 261 | + "text/plain": [ |
| 262 | + "1.1292849467900707" |
| 263 | + ] |
| 264 | + }, |
| 265 | + "execution_count": 13, |
| 266 | + "metadata": {}, |
| 267 | + "output_type": "execute_result" |
| 268 | + } |
| 269 | + ], |
| 270 | + "source": [ |
| 271 | + "out" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": 15, |
| 277 | + "metadata": {}, |
| 278 | + "outputs": [ |
| 279 | + { |
| 280 | + "data": { |
| 281 | + "text/plain": [ |
| 282 | + "array([2.2153137 , 0.56464247])" |
| 283 | + ] |
| 284 | + }, |
| 285 | + "execution_count": 15, |
| 286 | + "metadata": {}, |
| 287 | + "output_type": "execute_result" |
| 288 | + } |
| 289 | + ], |
| 290 | + "source": [ |
| 291 | + "back_fn(1.0)" |
| 292 | + ] |
| 293 | + }, |
| 294 | + { |
| 295 | + "cell_type": "code", |
| 296 | + "execution_count": 16, |
| 297 | + "metadata": {}, |
| 298 | + "outputs": [ |
| 299 | + { |
| 300 | + "data": { |
| 301 | + "text/plain": [ |
| 302 | + "array([2.2153137 , 0.56464247])" |
| 303 | + ] |
| 304 | + }, |
| 305 | + "execution_count": 16, |
| 306 | + "metadata": {}, |
| 307 | + "output_type": "execute_result" |
| 308 | + } |
| 309 | + ], |
| 310 | + "source": [ |
| 311 | + "f_grad(*SAMPLE_INPUT)" |
| 312 | + ] |
| 313 | + }, |
| 314 | + { |
| 315 | + "cell_type": "code", |
| 316 | + "execution_count": 17, |
| 317 | + "metadata": {}, |
| 318 | + "outputs": [], |
| 319 | + "source": [ |
| 320 | + "def value_and_grad(graph, inputs):\n", |
| 321 | + " out, back_fn = vjp(graph, inputs)\n", |
| 322 | + " grad = back_fn(1.0)\n", |
| 323 | + " return out, grad" |
| 324 | + ] |
| 325 | + }, |
| 326 | + { |
| 327 | + "cell_type": "code", |
| 328 | + "execution_count": 18, |
| 329 | + "metadata": {}, |
| 330 | + "outputs": [ |
| 331 | + { |
| 332 | + "data": { |
| 333 | + "text/plain": [ |
| 334 | + "(1.1292849467900707, array([2.2153137 , 0.56464247]))" |
| 335 | + ] |
| 336 | + }, |
| 337 | + "execution_count": 18, |
| 338 | + "metadata": {}, |
| 339 | + "output_type": "execute_result" |
| 340 | + } |
| 341 | + ], |
| 342 | + "source": [ |
| 343 | + "value_and_grad(compute_graph, SAMPLE_INPUT)" |
| 344 | + ] |
| 345 | + }, |
| 346 | + { |
| 347 | + "cell_type": "code", |
| 348 | + "execution_count": 19, |
| 349 | + "metadata": {}, |
| 350 | + "outputs": [ |
| 351 | + { |
| 352 | + "data": { |
| 353 | + "text/plain": [ |
| 354 | + "(1.1292849467900707, array([2.2153137 , 0.56464247]))" |
| 355 | + ] |
| 356 | + }, |
| 357 | + "execution_count": 19, |
| 358 | + "metadata": {}, |
| 359 | + "output_type": "execute_result" |
| 360 | + } |
| 361 | + ], |
| 362 | + "source": [ |
| 363 | + "f(*SAMPLE_INPUT), f_grad(*SAMPLE_INPUT)" |
| 364 | + ] |
| 365 | + }, |
| 366 | + { |
| 367 | + "cell_type": "code", |
| 368 | + "execution_count": null, |
| 369 | + "metadata": {}, |
| 370 | + "outputs": [], |
| 371 | + "source": [] |
| 372 | + } |
| 373 | + ], |
| 374 | + "metadata": { |
| 375 | + "kernelspec": { |
| 376 | + "display_name": "base", |
| 377 | + "language": "python", |
| 378 | + "name": "python3" |
| 379 | + }, |
| 380 | + "language_info": { |
| 381 | + "codemirror_mode": { |
| 382 | + "name": "ipython", |
| 383 | + "version": 3 |
| 384 | + }, |
| 385 | + "file_extension": ".py", |
| 386 | + "mimetype": "text/x-python", |
| 387 | + "name": "python", |
| 388 | + "nbconvert_exporter": "python", |
| 389 | + "pygments_lexer": "ipython3", |
| 390 | + "version": "3.10.9" |
| 391 | + } |
| 392 | + }, |
| 393 | + "nbformat": 4, |
| 394 | + "nbformat_minor": 2 |
| 395 | +} |
0 commit comments