Skip to content

New idea to visualize the distribution of PSA sampled parameters #170

@krijkamp

Description

@krijkamp

When the DARTH framework is uses, it would be nice to show the sampled distributions in an illustrative way.

Example to get started with. But we can improve this

Melt the dataset

df_melt <- melt(df_psa_random, variable.name = "Parameter")

Create a new column to classify parameters by prefix

df_melt <- df_melt %>%
mutate(Group = case_when(
str_starts(Parameter, "p_") ~ "Probabilities",
str_starts(Parameter, "u_") ~ "Utilities",
str_starts(Parameter, "c_") ~ "Costs",
TRUE ~ "Other"
))

Optionally check the groups

table(df_melt$Group)

df_probs <- df_melt %>% filter(Group == "Probabilities")

Probabilities:
ggplot(df_probs, aes(x = value, y = Parameter)) +
geom_density_ridges(scale = 1.5, rel_min_height = 0.01) +
theme_bw(base_size = 14) +
ggtitle("Probabilities")

df_utils <- df_melt %>% filter(Group == "Utilities")

ggplot(df_utils, aes(x = value, y = Parameter)) +
geom_density_ridges(scale = 1.5, rel_min_height = 0.01) +
theme_bw(base_size = 14) +
ggtitle("Utilities")

df_costs <- df_melt %>% filter(Group == "Costs")

ggplot(df_costs, aes(x = value, y = Parameter)) +
geom_density_ridges(scale = 1.5, rel_min_height = 0.01) +
theme_bw(base_size = 14) +
ggtitle("Costs")

df_other <- df_melt %>% filter(Group == "Other")

ggplot(df_other, aes(x = value, y = Parameter)) +
geom_density_ridges(scale = 1.5, rel_min_height = 0.01) +
theme_bw(base_size = 14) +
ggtitle("Other")

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions