Code for PACIA: Parameter-Efficient Adapter for Few-Shot Molecular Property Prediction
We used the following Python packages for core development. We tested on Python 3.7.
- pytorch 1.7.0
- torch-geometric 1.7.0
Tox21, SIDER, MUV and ToxCast are previously downloaded from SNAP. You can download the data here, unzip the file and put the resultant ``muv, sider, tox21, and toxcast" in the data folder.
To run the experiments, use the command (please check and tune the hyper-parameters in parser.py):
python main.py
quick reproduce results on Tox-21 10-shot:
bash script_train.sh
Get dataset and pipeline from https://github.com/Wenlin-Chen/ADKF-IFT#
Copy "./graph_feature_extractor.py" and "./gnn.py" into "ADKF-IFT/fs_mol/modules". Copy "./pacia_adkt_train.py" and "./pacia_adkt_test.py" into "ADKF-IFT/fs_mol". Copy "./pacia_adkt_utils.py" into "ADKF-IFT/fs_mol/utils"
Run "pacia_adkt_train.py" and "pacia_adkt_test.py" following instructions in "ADKF-IFT/README.md".