Skip to content

Commit daf2709

Browse files
committed
flake8/linter fixes
1 parent 0720ae7 commit daf2709

File tree

2 files changed

+4
-9
lines changed

2 files changed

+4
-9
lines changed

src/workbench/utils/chem_utils/mol_descriptors.py

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -346,14 +346,11 @@ def compute_descriptors(df: pd.DataFrame, include_mordred: bool = True, include_
346346

347347
# Sanitize column names for AWS Athena compatibility
348348
# - Must be lowercase, no special characters except underscore, no spaces
349-
result.columns = [
350-
re.sub(r"_+", "_", re.sub(r"[^a-z0-9_]", "_", col.lower()))
351-
for col in result.columns
352-
]
349+
result.columns = [re.sub(r"_+", "_", re.sub(r"[^a-z0-9_]", "_", col.lower())) for col in result.columns]
353350

354351
# Drop duplicate columns if any exist after sanitization
355352
if result.columns.duplicated().any():
356-
logger.warning(f"Duplicate column names after sanitization - dropping duplicates!")
353+
logger.warning("Duplicate column names after sanitization - dropping duplicates!")
357354
result = result.loc[:, ~result.columns.duplicated()]
358355

359356
return result

src/workbench/utils/pandas_utils.py

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -158,13 +158,11 @@ def compare_dataframes(df1: pd.DataFrame, df2: pd.DataFrame, display_columns: li
158158
elif pd.api.types.is_float_dtype(df1[column]) or pd.api.types.is_float_dtype(df2[column]):
159159
# Float comparison within epsilon with NaNs treated as equal
160160
differences = ~((df1[column] - df2[column]).abs() <= epsilon) & ~(
161-
pd.isna(df1[column]) & pd.isna(df2[column])
161+
pd.isna(df1[column]) & pd.isna(df2[column])
162162
)
163163
else:
164164
# Other types (int, Int64, etc.) - compare with NaNs treated as equal
165-
differences = (df1[column] != df2[column]) & ~(
166-
pd.isna(df1[column]) & pd.isna(df2[column])
167-
)
165+
differences = (df1[column] != df2[column]) & ~(pd.isna(df1[column]) & pd.isna(df2[column]))
168166

169167
# If differences exist, display them
170168
if differences.any():

0 commit comments

Comments
 (0)