diff --git a/docs/conf.py b/docs/conf.py index 818e226a..459816d1 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -203,7 +203,7 @@ # Bibliographic Dublin Core info. epub_title = project -# The unique identifier of the text. This can be a ISBN number +# The unique identifier of the text. This can be an ISBN number # or the project homepage. # # epub_identifier = '' diff --git a/preliz/distributions/exgaussian.py b/preliz/distributions/exgaussian.py index e897cdf8..21259d73 100644 --- a/preliz/distributions/exgaussian.py +++ b/preliz/distributions/exgaussian.py @@ -130,7 +130,7 @@ def rvs(self, size=None, random_state=None): ) def _fit_moments(self, mean, sigma): - # Just assume this is a approximately Gaussian + # Just assume this is approximately Gaussian self._update(mean, sigma, 1e-4) def _fit_mle(self, sample): diff --git a/preliz/unidimensional/matching.py b/preliz/unidimensional/matching.py index f20e278c..e68d35b1 100644 --- a/preliz/unidimensional/matching.py +++ b/preliz/unidimensional/matching.py @@ -99,7 +99,7 @@ def match_moments( # Initialize `to_dist` to a distribution matching the mean and standard deviation # of `from_dist`. The ``_fit_moments`` method is correct for some distributions, - # but just an heuristic for others. + # but just a heuristic for others. to_dist._fit_moments(from_dist.mean(), from_dist.std()) opt = optimize_moments(to_dist, moments, target_values, none_idx, fixed) @@ -212,7 +212,7 @@ def match_quantiles( # Initialize `to_dist` to a distribution matching the mean and standard deviation # of `from_dist`. The ``_fit_moments`` method is correct for some distributions, - # but just an heuristic for others. + # but just a heuristic for others. to_dist._fit_moments(from_dist.mean(), from_dist.std()) opt = optimize_quantiles(to_dist, quantiles, target_values, none_idx, fixed)