Skip to content

bigbio/onsite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

98 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

onsite

Python application PyPI - Version PyPI - Downloads Pepy Total Downloads GitHub Repo stars

What is onsite?

onsite is a comprehensive Python package for mass spectrometry post-translational modification (PTM) localization. It provides algorithms for confident phosphorylation site localization and scoring, including implementations of AScore, PhosphoRS, and LucXor (LuciPHOr2).

Key Features

  • Multiple Algorithms: AScore, PhosphoRS, and LucXor implementations
  • Statistical Validation: Probability-based scoring with FLR estimation
  • Unified CLI: Single command-line interface for all algorithms
  • Multi-threading: Parallel processing for improved performance
  • PyOpenMS Integration: Seamless integration with the OpenMS ecosystem
  • High Accuracy: Confident site localization with statistical validation
  • Flexible API: Both command-line and Python API support

Supported Algorithms

onsite provides three complementary algorithms for PTM localization:

1. AScore Algorithm

  • Method: Probability-based approach using binomial statistics
  • Features: Site-determining ion analysis, fast processing
  • Output: AScore values indicating localization confidence
  • Citation: Beausoleil et al. (2006) Nature Biotechnology

2. PhosphoRS Algorithm

  • Method: Compomics-style scoring with isomer analysis
  • Features: Site-specific probabilities, detailed isomer analysis
  • Output: Site probability scores and isomer details
  • Citation: Taus et al. (2011) Journal of Proteome Research

3. LucXor (LuciPHOr2) Algorithm

  • Method: Two-stage processing with FLR estimation
  • Features: False localization rate calculation, decoy-based validation
  • Output: Delta scores, peptide scores, global and local FLR
  • Citation: Fermin et al. (2013, 2015) MCP and Bioinformatics

Installation

Prerequisites

  • Python 3.11+
  • PyOpenMS 3.4.0+
  • NumPy 2.3.2+
  • SciPy 1.16.1+

Using Poetry (Recommended)

# Clone the repository
git clone https://github.com/bigbio/onsite.git
cd onsite

# Install with Poetry
poetry install

# Activate the virtual environment
poetry shell

Using pip

# Install from PyPI (when available)
pip install onsite

# Or install from source
git clone https://github.com/bigbio/onsite.git
cd onsite
pip install -e .

Development Installation

# Clone the repository
git clone https://github.com/bigbio/onsite.git
cd onsite

# Install with development dependencies
poetry install --with dev

# Or with pip
pip install -e ".[dev]"

Usage

Command Line Interface

onsite provides a unified command-line interface for all algorithms:

Unified onsite CLI

# AScore algorithm
onsite ascore -in spectra.mzML -id identifications.idXML -out results.idXML

# PhosphoRS algorithm  
onsite phosphors -in spectra.mzML -id identifications.idXML -out results.idXML

# LucXor algorithm
onsite lucxor -in spectra.mzML -id identifications.idXML -out results.idXML

Individual Pipeline Tools

AScore Pipeline
# Basic usage
python -m onsite.ascore.cli -in spectra.mzML -id identifications.idXML -out results.idXML

# With custom parameters
python -m onsite.ascore.cli -in spectra.mzML -id identifications.idXML -out results.idXML \
    --fragment-mass-tolerance 0.05 \
    --fragment-mass-unit Da \
    --threads 4 \
    --add-decoys
PhosphoRS Pipeline
# Basic usage
python -m onsite.phosphors.cli -in spectra.mzML -id identifications.idXML -out results.idXML

# With custom parameters
python -m onsite.phosphors.cli -in spectra.mzML -id identifications.idXML -out results.idXML \
    --fragment-mass-tolerance 0.05 \
    --fragment-mass-unit Da \
    --threads 1 \
    --add-decoys
LucXor Pipeline
# Basic usage
python -m onsite.lucxor.cli -in spectra.mzML -id identifications.idXML -out results.idXML

# With custom parameters
python -m onsite.lucxor.cli -in spectra.mzML -id identifications.idXML -out results.idXML \
    --fragment-method HCD \
    --fragment-mass-tolerance 0.5 \
    --fragment-error-units Da \
    --threads 8 \
    --debug

Command-line Options

AScore Options

Option Default Description
-in - Input mzML file with spectra
-id - Input idXML file with identifications
-out - Output idXML file with scores
--fragment-mass-tolerance 0.05 Fragment mass tolerance
--fragment-mass-unit Da Tolerance unit (Da or ppm)
--threads 1 Number of threads for parallel processing
--add-decoys False Include decoy sites for validation
--debug False Enable debug logging

PhosphoRS Options

Option Default Description
-in - Input mzML file with spectra
-id - Input idXML file with identifications
-out - Output idXML file with scores
--fragment-mass-tolerance 0.05 Fragment mass tolerance
--fragment-mass-unit Da Tolerance unit (Da or ppm)
--threads 1 Number of threads for parallel processing
--add-decoys False Include decoy sites for validation
--debug False Enable debug logging

LucXor Options

Option Default Description
-in - Input mzML file with spectra
-id - Input idXML file with identifications
-out - Output idXML file with scores
--fragment-method CID Fragmentation method (CID or HCD)
--fragment-mass-tolerance 0.5 Fragment mass tolerance
--fragment-error-units Da Tolerance units (Da or ppm)
--min-mz 150.0 Minimum m/z value to consider
--target-modifications Phospho (S/T/Y) List of target PTM definitions
--neutral-losses sty -H3PO4 -97.97690 Neutral loss definitions applied during scoring
--decoy-mass 79.966331 Mass offset used when generating decoy permutations
--decoy-neutral-losses X -H3PO4 -97.97690 Neutral loss patterns for decoy permutations
--max-charge-state 5 Maximum charge state
--max-peptide-length 40 Maximum peptide length
--max-num-perm 16384 Maximum permutations
--modeling-score-threshold 0.95 Minimum score for selecting PSMs during model building
--scoring-threshold 0.0 Minimum LucXor score to report
--min-num-psms-model 50 Minimum number of high-scoring PSMs required for modeling
--threads 1 Number of threads for parallel processing
--rt-tolerance 0.01 RT tolerance used when matching spectra by retention time
--debug False Enable debug logging

Algorithm Details

AScore Algorithm

The AScore algorithm provides phosphorylation site localization by analyzing MS/MS fragment ions to identify site-determining ions and computing localization probabilities based on fragment evidence.

Output Metrics:

  • AScore_pep_score: Overall peptide score
  • AScore_1, AScore_2, ...: Individual site scores
  • ProForma: Standardized sequence notation with confidence scores

PhosphoRS Algorithm

The PhosphoRS algorithm implements a comprehensive approach using isomer generation, theoretical spectrum matching, and probability scoring for confident phosphorylation site assignment.

Output Metrics:

  • Site-specific probability scores (0-100%)
  • Isomer details with sequence and score
  • Detailed confidence metrics

LucXor (LuciPHOr2) Algorithm

LucXor implements the complete LuciPHOr2 algorithm with two-stage processing for accurate PTM localization with false localization rate (FLR) estimation.

Output Metrics:

  • Luciphor_delta_score: Main localization score
  • Luciphor_pep_score: Peptide identification score
  • Luciphor_global_flr: Global false localization rate
  • Luciphor_local_flr: Local false localization rate

Example Results

You can find example result files in the data directory. Here are the direct links to different algorithm result files:

Algorithm Description Result File
AScore AScore phosphorylation site localization results AScore Example
PhosphoRS PhosphoRS phosphorylation site localization results PhosphoRS Example
LucXor LucXor (LuciPHOr2) PTM localization results with FLR LucXor Example

Documentation

For more detailed information:

Contributing

To contribute to onsite:

  1. Fork the repository
  2. Clone your fork: git clone https://github.com/YOUR-USERNAME/onsite
  3. Create a feature branch: git checkout -b new-feature
  4. Make your changes
  5. Install in development mode: pip install -e .
  6. Test your changes: poetry run pytest
  7. Commit your changes: git commit -am 'Add new feature'
  8. Push to the branch: git push origin new-feature
  9. Submit a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

If you use onsite in your research, please cite:

onsite: Mass spectrometry post-translational modification localization tool. 
https://github.com/bigbio/onsite

Related Tools

  • PyOpenMS - Python bindings for OpenMS
  • OpenMS - Open-source tools for mass spectrometry
  • nf-core/quantms - Quantitative mass spectrometry workflow

Need Help?

If you have questions or need assistance:

Acknowledgments

onsite builds upon the excellent work of the original algorithm developers and the OpenMS community. We thank all contributors and users for their feedback and support.


About

onsite: posttranslation modification site localization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 5

Languages