@@ -79,7 +79,7 @@ effective field is
7979In the continuum limit the exchange energy can be written as
8080
8181.. math ::
82- E_{ex} = \int _{V} A (\nabla \vec {m})^2 dx
82+ E_{ex} = \int _{V} A (\nabla \vec {m})^2 \mathrm {d}V
8383
8484 with :math: `V` as the volume of the system and :math: `A` the anisotropy constant
8585in :math: `\text {J m}^{-1 }`. Correspondingly, the effective
@@ -176,15 +176,15 @@ For bulk materials :math:`\vec{D}_{ij} = D \vec{r}_{ij}` and for interfacial DMI
176176In the continuum limit the bulk DMI energy is written as
177177
178178.. math ::
179- E_{\text {DMI}} = \int _ \Omega D_a \vec {m} \cdot (\nabla \times \vec {m}) dx
179+ E_{\text {DMI}} = \int _V D_a \vec {m} \cdot (\nabla \times \vec {m}) \, \mathrm {d}V
180180
181- where :math: `D_a = -D/a^2 ` and the effective field is
181+ where :math: `V` is the volume of the sample and :math: `D_a = -D/a^2 `. The corresponding
182+ effective field is
182183
183184.. math ::
184185 \vec {H}=-\frac {2 D_a}{\mu _0 M_s} (\nabla \times \vec {m})
185186
186187
187-
188188 For the interfacial case, the effective field becomes,
189189
190190.. math ::
@@ -197,14 +197,11 @@ Compared with the effective field [PRB 88 184422]
197197
198198 where :math: `D_a = D/a^2 `. Notice that there is no negative sign for the interfacial case.
199199
200- In the micromagnetic code, it is also implemented DMI for materials with
200+ In the micromagnetic code, it is also implemented the DMI for materials with
201201:math: `D_{2 d}` symmetry. The energy of this interaction reads
202202
203203.. math ::
204- E_{\text {DMI}} = D_a \vec {m} \cdot \left (
205- \frac {\partial \vec {m}}{\partial x} \times \hat {x}
206- - \frac {\partial \vec {m}}{\partial y} \times \hat {y}
207- \right )
204+ E_{\text {DMI}} = \int _V D_a \vec {m} \cdot \left ( \frac {\partial \vec {m}}{\partial x} \times \hat {x} - \frac {\partial \vec {m}}{\partial y} \times \hat {y} \right ) \, \mathrm {d}V
208205
209206 where :math: `D_a` is the DMI constant.
210207
0 commit comments