@@ -479,10 +479,11 @@ such that $N=1$ and the term $\frac{b-a}{N} = \frac{t_{i+1} - t_i}{1} = h$.
479479We obtain:
480480```math
481481\b egin{aligned}
482- Q_{t_i}^{t_{i+1}}(f) &= h\, \s um_{i=0}^1 w_i f(t_i) \\
483- &= h\, \s um_{i=0}^1 w_i \l eft[\s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m_i) \, (t_i-m_i)^k \r ight]\\
482+ Q_{t_i}^{t_{i+1}}(f) &= h\, \s um_{j=i}^{i+1} w_j f(t_j) \\
483+ &= h\, \s um_{j=i}^{i+1} w_j \l eft[\s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m_j) \, (t_j-m_j)^k \r ight]\\
484+ &= h\, \s um_{j=i}^{i+1} w_j \l eft[\s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m_j) \, q_k(t_j) \r ight]\\
484485&= \s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m) \l eft[
485- h\, \s um_{i=0}^1 w_i \, q_k(t_i )
486+ h\, \s um_{j=i}^{i+1} w_j \, q_k(t_j )
486487\r ight] \\
487488&= \s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m) Q_{t_i}^{t_{i+1}}(q_k)
488489\e nd{aligned}.
@@ -493,7 +494,7 @@ contribution from the interval $[t_{i}, t_{i+1}]$, namely
493494\t ag{5}
494495\b egin{aligned}
495496\i nt_{t_i}^{t_{i+1}} f(x)\, dx - Q_{t_i}^{t_{i+1}}(f)
496- &= \s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m) \l eft[ \i nt_{t_i}^{t_{i+1}} q_k(x) - Q_{t_i}^{t_{i+1}}(q_k) \r ight].
497+ &= \s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m) \l eft[ \i nt_{t_i}^{t_{i+1}} q_k(x) \, dx - Q_{t_i}^{t_{i+1}}(q_k) \r ight].
497498\e nd{aligned}
498499```
499500"""
@@ -523,15 +524,20 @@ One property of quadrature formulas is their **degree of exactness**:
523524
524525# ╔═╡ bc2043be-41e0-4083-9f8b-82b3ce6a13af
525526md """
526- Note that the polynomial $q_k = ( x - m_i )^{k}$
527+ Note that the polynomial
528+ ```math
529+ q_k(x) = ( x - m_i )^{k} = x^k + \l eft(\b egin{smallmatrix}k\\ 1\e nd{smallmatrix}\r ight)\, x^{k-1} m_i + \l eft(\b egin{smallmatrix}k\\ 2\e nd{smallmatrix}\r ight)\, x^{k-2} m_i^2
530+ + \c dots + \l eft(\b egin{smallmatrix}k\\ k-1\e nd{smallmatrix}\r ight)\, x \, m_i^{k-1}
531+ + m_i^k
532+ ```
527533only features monomials $x^s$ with $0 \l eq s \l eq k$.
528534Therefore a formula with degree of exactness $r$ will have
529- $\i nt_{t_i}^{t_{i+1}} q_k(x) - Q_{t_i}^{t_{i+1}}(q_k) = 0$ for $k \l eq r$.
535+ $\i nt_{t_i}^{t_{i+1}} q_k(x) \, dx - Q_{t_i}^{t_{i+1}}(q_k) = 0$ for $k \l eq r$.
530536In (5) the first non-zero error term is thus
531537```math
532538\b egin{aligned}
533- \l eft|\i nt_{t_i}^{t_{i+1}} q_{r+1}(x) - Q_{t_i}^{t_{i+1}}(q_{r+1})\r ight|
534- &\s tackrel{(\a st)}{=} \l eft|\i nt_{t_i}^{t_{i+1}} x^{r+1} - Q_{t_i}^{t_{i+1}}(x^{r+1})\r ight| \\
539+ \l eft|\i nt_{t_i}^{t_{i+1}} q_{r+1}(x) \, dx - Q_{t_i}^{t_{i+1}}(q_{r+1})\r ight|
540+ &\s tackrel{(\a st)}{=} \l eft|\i nt_{t_i}^{t_{i+1}} x^{r+1} \, dx - Q_{t_i}^{t_{i+1}}(x^{r+1})\r ight| \\
535541&\s tackrel{(\S )}{\l eq}
536542\w idetilde{C}_i h^{r+2}
537543\e nd{aligned}
0 commit comments