-
Notifications
You must be signed in to change notification settings - Fork 26
Description
Simplify user experience by allowing user to pass a table specifying various annotation files, corresponding audio files/root paths, the annotation column name, the data split (eg train/val/test), annotated class, and the annotation type (eg multi hot csv, categorical csv, raven, audacity, whombat, dipper single target, dipper multi target)
If annotated class is empty assumes all classes annotated
Returns a dictionary with labels for each split
CatLabels_dict= ingest_labels(labels_summary.csv or df, class_list,upsample=500, downsample=None)
catlabels["train"].label_counts()
CatLabels.convert()
catlabels.trim_whitespace()
CatLabels.dropclips(labels="uncertain")
Optionally Upsamples and or downsamples training split to N samples per class
Consider also supporting xeno canto ingestion via britekit