Skip to content

sisinflab/DataRec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🧩 DataRec: A Python Library for Standardized and Reproducible Data Management in Recommender Systems

Documentation License Python 3.9+


DataRec Logo

DataRec focuses on the data management phase of recommender systems, promoting standardization, interoperability, and best practices for data filtering, splitting, analysis, and export.

Official repository of the paper:
📄 DataRec: A Python Library for Standardized and Reproducible Data Management in Recommender Systems (SIGIR 2025) doi


📑 Table of Contents


Features ✨

  • Dataset Management: multi-format I/O with dynamic schema specification.
  • Reference Datasets: curated, versioned, and traceable datasets.
  • Filtering Strategies: widely used user/item interaction filters.
  • Splitting Strategies: temporal and random splits for reproducible evaluation.
  • Data Characteristics: compute dataset-level statistics (e.g., sparsity, popularity).
  • Interoperability: export datasets to external recommendation frameworks.

DataRec Architecture


Installation

From source (recommended for development)

git clone https://github.com/sisinflab/DataRec.git
cd DataRec
python3.9 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
# editable mode + optional dependency groups (defined in pyproject.toml)
pip install -e '.[dev,docs]'

Quickstart 🚀

from datarec.datasets import AmazonOffice
from datarec.processing import FilterOutDuplicatedInteractions, UserItemIterativeKCore
from datarec.splitters import RandomHoldOut

# 1️⃣ Load a reference dataset
data = AmazonOffice(version='2014').prepare_and_load()

# 2️⃣ Apply preprocessing filters
data = FilterOutDuplicatedInteractions().run(data)
data = UserItemIterativeKCore(cores=5).run(data)

# 3️⃣ Split into train/validation/test
splitter = RandomHoldOut(test_ratio=0.2, val_ratio=0.1, seed=42)
splits = splitter.run(data)

train, val, test = splits['train'], splits['val'], splits['test']

Datasets 📊

The complete and up-to-date list of datasets (with metadata and statistics) is available in the documentation:

👉 Datasets Section


Documentation 📚

Full documentation available at: https://sisinflab.github.io/DataRec/
Includes API reference, guides, tutorials, and dataset overview.


Contributing 🤝

Contributions are welcome!
To contribute:

  1. Create a feature/fix branch.
  2. Add tests and documentation updates as needed.
  3. Run tests before pushing.
  4. Open a pull request describing your changes clearly.

The project also receives updates from a private development repository maintained by SisInfLab.


Citation 📖

If you use DataRec in your research, please cite our SIGIR 2025 paper:

@inproceedings{DBLP:conf/sigir/MancinoBF0MPN25,
  author       = {Alberto Carlo Maria Mancino and
                  Salvatore Bufi and
                  Angela Di Fazio and
                  Antonio Ferrara and
                  Daniele Malitesta and
                  Claudio Pomo and
                  Tommaso Di Noia},
  title        = {DataRec: {A} Python Library for Standardized and Reproducible Data
                  Management in Recommender Systems},
  booktitle    = {{SIGIR}},
  pages        = {3478--3487},
  publisher    = {{ACM}},
  year         = {2025}
}

Authors and Contributors 👥

Authors

  • Alberto Carlo Maria Mancino (Politecnico di Bari)
  • Salvatore Bufi
  • Angela Di Fazio
  • Daniele Malitesta
  • Antonio Ferrara
  • Claudio Pomo
  • Tommaso Di Noia

Contributors


Alberto C. M. Mancino

Angela Di Fazio

Salvatore Bufi

Giuseppe Fasano

Gianluca Colonna

Maria L. N. De Bonis

Marco Valentini

Related Projects 🧩


License 📜

Distributed under the MIT License.
See LICENSE.


Maintained with ❤️ by SisInfLab

DataRec Logo

About

A Python Library for Standardized and Reproducible Data Management in Recommender Systems

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages