@@ -289,7 +289,7 @@ class CartModel(core.CoreModel):
289289 value for Random Forest: `sqrt(number of input attributes)` in case of
290290 classification and `number_of_input_attributes / 3` in case of regression.
291291 If `num_candidate_attributes=-1`, all the attributes are tested. Default:
292- 0 .
292+ -1 .
293293 num_candidate_attributes_ratio: Ratio of attributes tested at each node. If
294294 set, it is equivalent to `num_candidate_attributes =
295295 number_of_input_features x num_candidate_attributes_ratio`. The possible
@@ -308,7 +308,7 @@ class CartModel(core.CoreModel):
308308 training. This solution is faster but consumes much more memory than
309309 IN_NODE. - IN_NODE: The features are sorted just before being used in the
310310 node. This solution is slow but consumes little amount of memory. .
311- Default: "PRESORT ".
311+ Default: "IN_NODE ".
312312 sparse_oblique_max_num_projections: For sparse oblique splits i.e.
313313 `split_axis=SPARSE_OBLIQUE`. Maximum number of projections (applied after
314314 the num_projections_exponent). Oblique splits try out
@@ -420,11 +420,11 @@ def __init__(
420420 mhld_oblique_sample_attributes : Optional [bool ] = None ,
421421 min_examples : Optional [int ] = 5 ,
422422 missing_value_policy : Optional [str ] = "GLOBAL_IMPUTATION" ,
423- num_candidate_attributes : Optional [int ] = 0 ,
423+ num_candidate_attributes : Optional [int ] = - 1 ,
424424 num_candidate_attributes_ratio : Optional [float ] = - 1.0 ,
425425 pure_serving_model : Optional [bool ] = False ,
426426 random_seed : Optional [int ] = 123456 ,
427- sorting_strategy : Optional [str ] = "PRESORT " ,
427+ sorting_strategy : Optional [str ] = "IN_NODE " ,
428428 sparse_oblique_max_num_projections : Optional [int ] = None ,
429429 sparse_oblique_normalization : Optional [str ] = None ,
430430 sparse_oblique_num_projections_exponent : Optional [float ] = None ,
0 commit comments