Skip to content

[QUESTION] Why does historical_forecasts() seem to require longer training data VS using predict() method?? #2939

@lubibi13

Description

@lubibi13

model_tsmx_luz_temp = LinearRegressionModel(lags=[-1,-2,-3,-4,-5,-6,-7,-14,-21,-30,-60,-90,-120,-150,-180,-210,-240,-365],
output_chunk_length=365,
multi_models=False,
random_state=43)

Here is a snapshot of my target series:
Image

hfc_params_mult_luz = {
"series": temp_max_ser_luz,
"forecast_horizon": 365,
"verbose": True,
"retrain": True,
}

historical_fcasts_mult_luz = model_tsmx_luz_temp.historical_forecasts(last_points_only=False, stride=3, **hfc_params_mult_luz)

Image

Why did historical_forecasts() decide to start its first forecast on 2024-01-01 and not 2023-01-01??
There is enough training data for the model to start its forecast on 2023-01-01 which I tried using a simple predict() method.

Image

Using the same model...
model_tsmx_luz_temp.fit(samp_temp_exa)
pred_tsmx_luz_temp = model_tsmx_luz_temp.predict(365)

Image

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    Status

    To do

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions