model_tsmx_luz_temp = LinearRegressionModel(lags=[-1,-2,-3,-4,-5,-6,-7,-14,-21,-30,-60,-90,-120,-150,-180,-210,-240,-365],
output_chunk_length=365,
multi_models=False,
random_state=43)
Here is a snapshot of my target series:

hfc_params_mult_luz = {
"series": temp_max_ser_luz,
"forecast_horizon": 365,
"verbose": True,
"retrain": True,
}
historical_fcasts_mult_luz = model_tsmx_luz_temp.historical_forecasts(last_points_only=False, stride=3, **hfc_params_mult_luz)
Why did historical_forecasts() decide to start its first forecast on 2024-01-01 and not 2023-01-01??
There is enough training data for the model to start its forecast on 2023-01-01 which I tried using a simple predict() method.
Using the same model...
model_tsmx_luz_temp.fit(samp_temp_exa)
pred_tsmx_luz_temp = model_tsmx_luz_temp.predict(365)
