Skip to content

Conversation

@renovate
Copy link
Contributor

@renovate renovate bot commented Dec 9, 2024

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (changelog) >=1.16.0,<2.2 -> >=2.2.6,<3 age adoption passing confidence

Release Notes

numpy/numpy (numpy)

v2.2.6

Compare Source

v2.2.5: (Apr 19, 2025)

Compare Source

NumPy 2.2.5 Release Notes

NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4
release. It has a large number of typing fixes/improvements as well as
the normal bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Baskar Gopinath +
  • Nathan Goldbaum
  • Nicholas Christensen +
  • Sayed Adel
  • karl +

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​28545: MAINT: Prepare 2.2.x for further development
  • #​28582: BUG: Fix return type of NpyIter_GetIterNext in Cython declarations
  • #​28583: BUG: avoid deadlocks with C++ shared mutex in dispatch cache
  • #​28585: TYP: fix typing errors in _core.strings
  • #​28631: MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines
  • #​28632: BUG: Set writeable flag for writeable dlpacks.
  • #​28633: BUG: Fix crackfortran parsing error when a division occurs within...
  • #​28650: TYP: fix ndarray.tolist() and .item() for unknown dtype
  • #​28654: BUG: fix deepcopying StringDType arrays (#​28643)
  • #​28661: TYP: Accept objects that write() to str in savetxt
  • #​28663: CI: Replace QEMU armhf with native (32-bit compatibility mode)
  • #​28682: SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD
  • #​28683: TYP: add missing "b1" literals for dtype[bool]
  • #​28705: TYP: Fix false rejection of NDArray[object_].__abs__()
  • #​28706: TYP: Fix inconsistent NDArray[float64].__[r]truediv__ return...
  • #​28723: TYP: fix string-like ndarray rich comparison operators
  • #​28758: TYP: some [arg]partition fixes
  • #​28772: TYP: fix incorrect random.Generator.integers return type
  • #​28774: TYP: fix count_nonzero signature

Checksums

MD5
3a5d0889d6d7951f44bc6f7a03fa30c6  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
bcf9f4e768b070e17b2635f422a6e27d  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
e82c8fa47a65bb5c2c83295f549dab12  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
a5511a995c0f79a8b9a81f2b50e9f692  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
72bfc1f98238a8e4ba08999e61111e0e  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
146c83a5b8099d8d2607392b2ef7fedf  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ebdc80b54b008a10575e5d7bbb613f5  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
97efde6443da8f9280a5fc2614a087e5  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
c143f352206cec535b41b6b1d34c5898  numpy-2.2.5-cp310-cp310-win32.whl
0b17fbbf584785f675f1c5b24a00ff93  numpy-2.2.5-cp310-cp310-win_amd64.whl
58532622d7eff69a3c71c1ae89dea070  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
0d002c733bb02debe0b15de5ba872d1e  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
ff0c736c60be96506806061ace2251a1  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
4febdec973c4405fd08ef35e0c130de1  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
0bf4e457c612e565420e135458e70fe0  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a43b608ad15ebdc0960611497205d598  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7b4b1afd412149a9af7c25d7346fade8  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
a1e70be013820f92dbfd4796fc4044bb  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
73344e05a6fec0b38183363b4a026252  numpy-2.2.5-cp311-cp311-win32.whl
b7d5fdd23057c58d15c84eef6bfedb55  numpy-2.2.5-cp311-cp311-win_amd64.whl
801b11bb546aac2d92d7b3d5d6c90e86  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
68dc4298cad9405ad30cfb723be4ae48  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
c31c872e0fa8df5ed7f91882621a925f  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
179dfa545c32c44b77cf8db3b973785f  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
4562513ff2f1e3f31d66b8e435000141  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c80a2d8aab1a4d6a66f3fca2f0744744  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e363e0d8c116522d55b0ddd0cbf2de67  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
d31d443270c76b7238ece2f87b048d21  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
bf469fe048fa4ed75a5d8725297e283a  numpy-2.2.5-cp312-cp312-win32.whl
069b832aa15b6a815497135e7fa8cae8  numpy-2.2.5-cp312-cp312-win_amd64.whl
b2cf059c831cbcfdb4044613a1e5bc8d  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
70bcb93e55ff0f6602636602e0834607  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
00c4938d67fd5b658ad92ac26fbe9cab  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
0ca38aa51874b9252a2c9d85f81dcd07  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
6062cf707b8bc07a1600af0991a0a88e  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
62c1cf7de0327546f3a1e3852de640d3  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab3ad3390396552f76160139cc528784  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
d258ba55c9a3936fa0c113cac8bbc0cc  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
59bb7e1acb81fc4a02c3b791e110f01e  numpy-2.2.5-cp313-cp313-win32.whl
2e5728a9e5c6405d3a22138e4dd7019f  numpy-2.2.5-cp313-cp313-win_amd64.whl
d315521ec7275d0341787f2450e57e55  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
17018c7c259ae81cf2ca4f58523d7d1c  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
ef6fd6a9c6a07db004a272b82f0ea710  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
07b2baf70b84b44ca6924794d9c7e431  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
a2fb1ed562d2b6da091d980c7486d113  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
22fa9137283f463436d7b20a220071cd  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b0ae924e4834155eb5ac159ae611c292  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c7a8351484f2df9a499c68f1ac73121c  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1da753e4127a0bdcdfbfa6639568057e  numpy-2.2.5-cp313-cp313t-win32.whl
a8c869efc0888f214239e5c4f0e6acfb  numpy-2.2.5-cp313-cp313t-win_amd64.whl
7255b93f38e7d54a59d6798182f24c6a  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
6743ce025de6c245b03ca8511b306503  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
5abbeec4ff2add1c46f8779f730c73fa  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e2e01f02d05e111ef2b104d1b3afad1  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
df2e46b468f9fdf06b13b04eca9a723f  numpy-2.2.5.tar.gz
SHA256
1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88  numpy-2.2.5-cp310-cp310-win32.whl
e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7  numpy-2.2.5-cp310-cp310-win_amd64.whl
c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175  numpy-2.2.5-cp311-cp311-win32.whl
b13f04968b46ad705f7c8a80122a42ae8f620536ea38cf4bdd374302926424dd  numpy-2.2.5-cp311-cp311-win_amd64.whl
ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
47834cde750d3c9f4e52c6ca28a7361859fcaf52695c7dc3cc1a720b8922683e  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
2c1a1c6ccce4022383583a6ded7bbcda22fc635eb4eb1e0a053336425ed36dfa  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
9d75f338f5f79ee23548b03d801d28a505198297534f62416391857ea0479571  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3a801fef99668f309b88640e28d261991bfad9617c27beda4a3aec4f217ea073  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
abe38cd8381245a7f49967a6010e77dbf3680bd3627c0fe4362dd693b404c7f8  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
5a0ac90e46fdb5649ab6369d1ab6104bfe5854ab19b645bf5cda0127a13034ae  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
0cd48122a6b7eab8f06404805b1bd5856200e3ed6f8a1b9a194f9d9054631beb  numpy-2.2.5-cp312-cp312-win32.whl
ced69262a8278547e63409b2653b372bf4baff0870c57efa76c5703fd6543282  numpy-2.2.5-cp312-cp312-win_amd64.whl
059b51b658f4414fff78c6d7b1b4e18283ab5fa56d270ff212d5ba0c561846f4  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
47f9ed103af0bc63182609044b0490747e03bd20a67e391192dde119bf43d52f  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
261a1ef047751bb02f29dfe337230b5882b54521ca121fc7f62668133cb119c9  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
4520caa3807c1ceb005d125a75e715567806fed67e315cea619d5ec6e75a4191  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
3d14b17b9be5f9c9301f43d2e2a4886a33b53f4e6fdf9ca2f4cc60aeeee76372  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ba321813a00e508d5421104464510cc962a6f791aa2fca1c97b1e65027da80d  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a4cbdef3ddf777423060c6f81b5694bad2dc9675f110c4b2a60dc0181543fac7  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
54088a5a147ab71a8e7fdfd8c3601972751ded0739c6b696ad9cb0343e21ab73  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
c8b82a55ef86a2d8e81b63da85e55f5537d2157165be1cb2ce7cfa57b6aef38b  numpy-2.2.5-cp313-cp313-win32.whl
d8882a829fd779f0f43998e931c466802a77ca1ee0fe25a3abe50278616b1471  numpy-2.2.5-cp313-cp313-win_amd64.whl
e8b025c351b9f0e8b5436cf28a07fa4ac0204d67b38f01433ac7f9b870fa38c6  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
8dfa94b6a4374e7851bbb6f35e6ded2120b752b063e6acdd3157e4d2bb922eba  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
97c8425d4e26437e65e1d189d22dff4a079b747ff9c2788057bfb8114ce1e133  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
352d330048c055ea6db701130abc48a21bec690a8d38f8284e00fab256dc1376  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
8b4c0773b6ada798f51f0f8e30c054d32304ccc6e9c5d93d46cb26f3d385ab19  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
55f09e00d4dccd76b179c0f18a44f041e5332fd0e022886ba1c0bbf3ea4a18d0  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c26843fd58f65da9491165072da2cccc372530681de481ef670dcc8e27cfb066  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1a161c2c79ab30fe4501d5a2bbfe8b162490757cf90b7f05be8b80bc02f7bb8e  numpy-2.2.5-cp313-cp313t-win32.whl
d403c84991b5ad291d3809bace5e85f4bbf44a04bdc9a88ed2bb1807b3360bb8  numpy-2.2.5-cp313-cp313t-win_amd64.whl
b4ea7e1cff6784e58fe281ce7e7f05036b3e1c89c6f922a6bfbc0a7e8768adbe  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
d7543263084a85fbc09c704b515395398d31d6395518446237eac219eab9e55e  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d2e3bdadaba0e040d1e7ab39db73e0afe2c74ae277f5614dad53eadbecbbb169  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
a9c0d994680cd991b1cb772e8b297340085466a6fe964bc9d4e80f5e2f43c291  numpy-2.2.5.tar.gz

v2.2.4: 2.2.4 (Mar 16, 2025)

Compare Source

NumPy 2.2.4 Release Notes

NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3
release. There are a large number of typing improvements, the rest of
the changes are the usual mix of bugfixes and platform maintenace.

This release supports Python versions 3.10-3.13.

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhishek Kumar
  • Andrej Zhilenkov
  • Andrew Nelson
  • Charles Harris
  • Giovanni Del Monte
  • Guan Ming(Wesley) Chiu +
  • Jonathan Albrecht +
  • Joren Hammudoglu
  • Mark Harfouche
  • Matthieu Darbois
  • Nathan Goldbaum
  • Pieter Eendebak
  • Sebastian Berg
  • Tyler Reddy
  • lvllvl +

Pull requests merged

A total of 17 pull requests were merged for this release.

Checksums

MD5
935928cbd2de140da097f6d5f4a01d72  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
bf7fd01bb177885e920173b610c195d9  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
826e52cd898567a0c446113ab7a7b362  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
9982a91d7327aea541c24aff94d3e462  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
5bdf5b63f4ee01fa808d13043b2a2275  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
677b3031105e24eaee2e0e57d7c2a306  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d857867787fe1eb236670e7fdb25f414  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
a5aff3a7eb2923878e67fbe1cd04a9e9  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
e00bd3ac85d8f34b46b7f97a8278aeb3  numpy-2.2.4-cp310-cp310-win32.whl
e5cb2a5d14bccee316bb73173be125ec  numpy-2.2.4-cp310-cp310-win_amd64.whl
494f60d8e1c3500413bd093bb3f486ea  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
a886a9f3e80a60ce6ba95b431578bbca  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
889f3b507bab9272d9b549780840a642  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
059788668d2c4e9aace4858e77c099ed  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
db9ae978afb76a4bf79df0657a66aaeb  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e36963a4c177157dc7b0775c309fa5a8  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3603e683878b74f38e5617f04ff6a369  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
afbc410fb9b42b19f4f7c81c21d6777f  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
33ff8081378188894097942f80c33e26  numpy-2.2.4-cp311-cp311-win32.whl
5b11fe8d26318d85e0bc577a654f6643  numpy-2.2.4-cp311-cp311-win_amd64.whl
91121787f396d3e98210de8b617e5d48  numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
c524d1020b4652aacf4477d1628fa1ba  numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
eb08f551bdd6772155bb39ac0da47479  numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
7cb37fc9145d0ebbea5666b4f9ed1027  numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c4452a5dc557c291904b5c51a4148237  numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bd23a12ead870759f264160ab38b2c9d  numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07b44109381985b48d1eef80feebc5ad  numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
95f1a27d33106fa9f40ee0714681c840  numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
507e550a55b19dedf267b58a487ba0bc  numpy-2.2.4-cp312-cp312-win32.whl
be21ccbf8931e92ba1fdb2dc1250bf2a  numpy-2.2.4-cp312-cp312-win_amd64.whl
e94003c2b65d81b00203711c5c42fb8e  numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
cf781fd5412ffd826e0436883452cc17  numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
92c9a30386a64f2deddad1db742bd296  numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
7fd16554fa0a15b7f99b1fabf1c4592c  numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
9293b0575a902b2d55c35567dee7679e  numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9970699bd95e8a64a562b1e6328b83d0  numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e8597c611a919a8e88229d6889c1f86e  numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
329288501f012606605bdbed368e58e9  numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
04bf8d0f6a9e279ab01df4ed0b4aeee1  numpy-2.2.4-cp313-cp313-win32.whl
66801fe84a436b7ed3be6e0082b86917  numpy-2.2.4-cp313-cp313-win_amd64.whl
3e2f31e01b45cd16a87b794477de3714  numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
7504018213a3a8fea7173e2c1d0fcfd1  numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
e299021397c3cdb941b7ffe77cf0fefe  numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
1cc2731a246079bcab361179f38e7ccb  numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
e6eccf936d25c9eda9df1a4d50ae2fdc  numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ba825efd05cca6d56c3dca9f7f1f88e7  numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
369eebec47c9c27cb4841a13e9522167  numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
554dbfa52988d01f715cbe8d4da4b409  numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
811d25a008c68086c9382487e9a4127a  numpy-2.2.4-cp313-cp313t-win32.whl
893fd2fdd42f386e300bee885bbb7778  numpy-2.2.4-cp313-cp313t-win_amd64.whl
65e284546c5ee575eca0a3726c0a1d98  numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e4e73511eac8f1a10c6abbd6fa2fa0aa  numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
a884ed5263b91fa87b5e3d14caf955a5  numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7330087a6ad1527ae20a495e2fb3b357  numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
56232f4a69b03dd7a87a55fffc5f2ebc  numpy-2.2.4.tar.gz
SHA256
8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a  numpy-2.2.4-cp310-cp310-win32.whl
0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542  numpy-2.2.4-cp310-cp310-win_amd64.whl
e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09  numpy-2.2.4-cp311-cp311-win32.whl
f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91  numpy-2.2.4-cp311-cp311-win_amd64.whl
a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4  numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854  numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24  numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee  numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba  numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592  numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb  numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f  numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00  numpy-2.2.4-cp312-cp312-win32.whl
2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146  numpy-2.2.4-cp312-cp312-win_amd64.whl
1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7  numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0  numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392  numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc  numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298  numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7  numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6  numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd  numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c  numpy-2.2.4-cp313-cp313-win32.whl
207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3  numpy-2.2.4-cp313-cp313-win_amd64.whl
8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8  numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39  numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd  numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0  numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960  numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8  numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc  numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff  numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286  numpy-2.2.4-cp313-cp313t-win32.whl
188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d  numpy-2.2.4-cp313-cp313t-win_amd64.whl
7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8  numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c  numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d  numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d  numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f  numpy-2.2.4.tar.gz

v2.2.3: 2.2.3 (Feb 13, 2025)

Compare Source

NumPy 2.2.3 Release Notes

NumPy 2.2.3 is a patch release that fixes bugs found after the 2.2.2
release. The majority of the changes are typing improvements and fixes
for free threaded Python. Both of those areas are still under
development, so if you discover new problems, please report them.

This release supports Python versions 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • !amotzop
  • Charles Harris
  • Chris Sidebottom
  • Joren Hammudoglu
  • Matthew Brett
  • Nathan Goldbaum
  • Raghuveer Devulapalli
  • Sebastian Berg
  • Yakov Danishevsky +

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #​28185: MAINT: Prepare 2.2.x for further development
  • #​28201: BUG: fix data race in a more minimal way on stable branch
  • #​28208: BUG: Fix from_float_positional errors for huge pads
  • #​28209: BUG: fix data race in np.repeat
  • #​28212: MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should...
  • #​28224: MAINT: update highway to latest
  • #​28236: BUG: Add cpp atomic support (#​28234)
  • #​28237: BLD: Compile fix for clang-cl on WoA
  • #​28243: TYP: Avoid upcasting float64 in the set-ops
  • #​28249: BLD: better fix for clang / ARM compiles
  • #​28266: TYP: Fix timedelta64.__divmod__ and timedelta64.__mod__...
  • #​28274: TYP: Fixed missing typing information of set_printoptions
  • #​28278: BUG: backport resource cleanup bugfix from gh-28273
  • #​28282: BUG: fix incorrect bytes to stringdtype coercion
  • #​28283: TYP: Fix scalar constructors
  • #​28284: TYP: stub numpy.matlib
  • #​28285: TYP: stub the missing numpy.testing modules
  • #​28286: CI: Fix the github label for TYP: PR's and issues
  • #​28305: TYP: Backport typing updates from main
  • #​28321: BUG: fix race initializing legacy dtype casts
  • #​28324: CI: update test_moderately_small_alpha

Checksums

MD5
9cd8b5e358f89016f403a6c1a27e7e87  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
2818f5a9efcfc3bb6bf657137df26046  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
6d65c6a336cfb69fe4ddd756cad73d55  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
7f4cf33c634b33f633d4bf47f560a86d  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
3c04024badd42bfcc68c14f106efa93f  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
07658df1de0e1d3721de0aacff4313cd  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e753fc4b7c879b29442ee9bab25eddd  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
d1811f1988d88b00825bc6e943d8e22d  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
b5fe91363c16001ea30cbd5befbb0555  numpy-2.2.3-cp310-cp310-win32.whl
44dfe1df1640e4fe762bedad57cd7165  numpy-2.2.3-cp310-cp310-win_amd64.whl
6156418f596620b00a3c221baef02476  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
97b925bac245aad1297d22ad3cfaa74c  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
3f05819fcb71df1d3093e5d1c041a4e9  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
f6763893ba9a5739fefa0929fd152db2  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
e93cf6ed4e1a3f9a8009ee7f2fcb0da8  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
851dcbcbe90212c385dcdac1614cca83  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9b27cf1d6319f70370f4b0af10c03f5c  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
28d20c95ff23d27ae639b4960df777ec  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
559fefe30c0043a088adeca90231b382  numpy-2.2.3-cp311-cp311-win32.whl
5e32a1cc3dcfe729f675784a53e4d553  numpy-2.2.3-cp311-cp311-win_amd64.whl
12134dcf62b2bca2eeebb7bbc45c2a71  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
c72318236531d3ca61d229eaf96f7d04  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
1b807acc844c2ba5be7bc7586d4a3a6b  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
810d4908371bb2f08b0c7b16d3f05970  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
bb918cedd0931cb68af9e77096dedf54  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
92c6c6c5b22b207425b329f061bd18fa  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
10d48fb9d86280db1afe7224b15a51af  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
a73da0434a971b21d8a9c0596015d629  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
c5f1e734c7d872e2f9af71d32e62d59c  numpy-2.2.3-cp312-cp312-win32.whl
884c1a89844f539ab15b7016a43d231c  numpy-2.2.3-cp312-cp312-win_amd64.whl
3a2de7f886cb756cf8d0375a36721926  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
c1fe5b6a9015c2877647419caa009be0  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
bb3f3a69219bbcdb719bbe38e4e69f79  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
8158c2e980a1cbfb4d98ff3a273bb2e9  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
4d3d9b0c14db955e4b1aa1a1971d2def  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6575308269513900c94803258b89ac83  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
945b91c2093fed2a1f34597fc66e5a35  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
c5867508607f75ed23426315a7ad86d7  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
5a1497c262d9aa52ce6859a12a54ebbc  numpy-2.2.3-cp313-cp313-win32.whl
69c98e036d59eb74e4620c7649b5d7fc  numpy-2.2.3-cp313-cp313-win_amd64.whl
2535d7c0f98ad848bcf1f48f7c358e41  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
aea9afa69d510ce905b2b8dbf0e33a11  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
cc5aceacd0a44a67cdd2cf8d5a446ca3  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
32eb2ed1e734ea26c90f75b1f5616564  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f1d85f322c3e85ef748c3e5594b94226  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f24ce01ad5c352c76614a12fa5e2319  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62841d4b49c5a0cef2c2ba26a16f6959  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
d7b512f83999d05c47e55b931f2dcdfe  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
1dca2f20e0accc1741e5fb233ecf7dff  numpy-2.2.3-cp313-cp313t-win32.whl
347b71f0db5b49a25ef1ed677e47999b  numpy-2.2.3-cp313-cp313t-win_amd64.whl
3615d13c8c14c323aeda1c07d5a7fd55  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
f7d2ba950c5aa11c100bb6bf202d5799  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
b4336174c843c4943084e17945cd1165  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d856a89e028c393f8125739c56591e0  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
c6ee254bcdf1e2fdb13d87e0ee4166ba  numpy-2.2.3.tar.gz
SHA256
cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094  numpy-2.2.3-cp310-cp310-win32.whl
596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb  numpy-2.2.3-cp310-cp310-win_amd64.whl
16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5  numpy-2.2.3-cp311-cp311-win32.whl
9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f  numpy-2.2.3-cp311-cp311-win_amd64.whl
12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe  numpy-2.2.3-cp312-cp312-win32.whl
83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d  numpy-2.2.3-cp312-cp312-win_amd64.whl
7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693  numpy-2.2.3-cp313-cp313-win32.whl
5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b  numpy-2.2.3-cp313-cp313-win_amd64.whl
435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef  numpy-2.2.3-cp313-cp313t-win32.whl
aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082  numpy-2.2.3-cp313-cp313t-win_amd64.whl
3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020  numpy-2.2.3.tar.gz

v2.2.2: 2.2.2 (Jan 18, 2025)

Compare Source

NumPy 2.2.2 Release Notes

NumPy 2.2.2 is a patch release that fixes bugs found after the 2.2.1
release. The number of typing fixes/updates is notable. This release
supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Alicia Boya García +
  • Charles Harris
  • Joren Hammudoglu
  • Kai Germaschewski +
  • Nathan Goldbaum
  • PTUsumit +
  • Rohit Goswami
  • Sebastian Berg

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #​28050: MAINT: Prepare 2.2.x for further development
  • #​28055: TYP: fix void arrays not accepting str keys in __setitem__
  • #​28066: TYP: fix unnecessarily broad integer binop return types (#​28065)
  • #​28112: TYP: Better ndarray binop return types for float64 &...
  • #​28113: TYP: Return the correct bool from issubdtype
  • #​28114: TYP: Always accept date[time] in the datetime64 constructor
  • #​28120: BUG: Fix auxdata initialization in ufunc slow path
  • #​28131: BUG: move reduction initialization to ufunc initialization
  • #​28132: TYP: Fix interp to accept and return scalars
  • #​28137: BUG: call PyType_Ready in f2py to avoid data races
  • #​28145: BUG: remove unnecessary call to PyArray_UpdateFlags
  • #​28160: BUG: Avoid data race in PyArray_CheckFromAny_int
  • #​28175: BUG: Fix f2py directives and --lower casing
  • #​28176: TYP: Fix overlapping overloads issue in 2->1 ufuncs
  • #​28177: TYP: preserve shape-type in ndarray.astype()
  • #​28178: TYP: Fix missing and spurious top-level exports

Checksums

MD5
749cb2adf8043551aae22bbf0ed3130a  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
bc79fa2e44316b7ce9bacb48a993ed91  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
c6b2caa2bbb645b5950dccb77efb1dbb  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
8c410efac169af880cacbbac8a731658  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
21d165669635a9b680d03b0b4e7f5b98  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a34ef5e7c967136fdc59c822e99f87d6  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a81749effc5160ff8dde7eb2ebe868c4  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
546612d82fae082697879aaf2b985b1b  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
d874e626f58175ad603cb68fda2a4e28  numpy-2.2.2-cp310-cp310-win32.whl
20564a5caeb621061267f9d80c1e7ed0  numpy-2.2.2-cp310-cp310-win_amd64.whl
ef5336ddae73feef891844a205f89b15  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
7a0c8804cb6ebca82b1cf3063b410687  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
1682639d0420a532f8894c4a8685b23d  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
d33d53efc5744b577cb8a6ac9971cfdb  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
c85b92e2ed7ef0eaeb15909ad73aea22  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
efa1a587f607a37336c477bed977ea64  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e0effe9902e262704a115c6f7095daf7  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
425e0cebeb1c2c91bba42ae195836268  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
57121319a2fbb76eed4b268282ed668e  numpy-2.2.2-cp311-cp311-win32.whl
fdb54e7345ff657d208fbb52469a5861  numpy-2.2.2-cp311-cp311-win_amd64.whl
bdf299e0abc45b5c5113a1cc5505636a  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
30c25784c07965592cf88104b6c02508  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
65e630a0de5403c41a0083198bc14442  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
6d9f50717e7b40f1ebdf139f83cc7504  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
6b092a9280ada70482d44f538752fc0b  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9c273da8438391eab30f6c1c4898be5d  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d619047dcaf041b806a7b59ff0a798d5  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
fa5d0d979104456d7c43a183223c8587  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
3b8689aedff5037cad85b018e2d5e43a  numpy-2.2.2-cp312-cp312-win32.whl
a2340ff05cae7e09f63bfcfd4e75ea87  numpy-2.2.2-cp312-cp312-win_amd64.whl
044e86bd65492af34a59e4109fbeed16  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
7ca0f0e8c8d3d80ec473ec33929c2ae3  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
4b866ad895e007005afe8a29837cf7d6  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
2e6247faabf6d0ac0fafaca0bb405ff8  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
773982551185ae327cdefe416e73acfc  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1c0ecc958a555a8a95c92c1dd7dc2358  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9f662eb58b8f711585550d6fdf8afa4f  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
53471186fc990eb22e82a0512b310438  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
6b4d65349c74dd91853a7cc6b5c5786e  numpy-2.2.2-cp313-cp313-win32.whl
33dc5bab2d3f752ef00f81021d68cb5a  numpy-2.2.2-cp313-cp313-win_amd64.whl
0acc5069c5ab4fe3ea7c35956636c462  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
01e3f727594a12eee6d0677113525b96  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
7b1ddabcb187b18caa52055bb2b2dc67  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
a09f5c138ad8c87b9692eea99f344a98  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
289ec3155aa21c5a161b2d61d2cf3c2d  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6bb3eb03d400ad708942afbfebd07abc  numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62f8ef2a5c9e76b0e43851a7bb9c0379  numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
59b4b77118f958dd07484686e82b1e7a  numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
726b58ec542581c5e46adfd4c5c0fed0  numpy-2.2.2-cp313-cp313t-win32.whl
f2b4eab55a963e8cd4c6c1e573c9a59f  numpy-2.2.2-cp313-cp313t-win_amd64.whl
f6a93eaebee6f9890a4922571141ecb5  numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fb457bbe2d231e836d2230b06d4706ca  numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
df4c07a48a24621167c12704ba5ac0de  numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d1108b9060469eb28bb4a4cffa7b98f  numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
ac108586d3aeab9e2d0134b744763eb9  numpy-2.2.2.tar.gz
SHA256
7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160  numpy-2.2.2-cp310-cp310-win32.whl
64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014  numpy-2.2.2-cp310-cp310-win_amd64.whl
642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50  numpy-2.2.2-cp311-cp311-win32.whl
da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2  numpy-2.2.2-cp311-cp311-win_amd64.whl
ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283  numpy-2.2.2-cp312-cp312-win32.whl
5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb  numpy-2.2.2-cp312-cp312-win_amd64.whl
b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9  numpy-2.2.2-cp313-cp313-win32.whl
5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369  numpy-2.2.2-cp313-cp313-win_amd64.whl
b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_a

Configuration

📅 Schedule: Branch creation - "before 12pm every weekday" (UTC), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot changed the title chore(deps): update dependency numpy to v2.2.0 chore(deps): update dependency numpy to v2.2.0 - autoclosed Dec 15, 2024
@renovate renovate bot closed this Dec 15, 2024
@renovate renovate bot deleted the renovate/numpy-2.x branch December 15, 2024 09:53
@renovate renovate bot changed the title chore(deps): update dependency numpy to v2.2.0 - autoclosed chore(deps): update dependency numpy to v2.2.0 Dec 17, 2024
@renovate renovate bot reopened this Dec 17, 2024
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 47d84f6 to a2f52f3 Compare December 17, 2024 00:19
@renovate renovate bot changed the title chore(deps): update dependency numpy to v2.2.0 chore(deps): update dependency numpy to v2.2.1 Dec 21, 2024
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from a2f52f3 to 0c4a33d Compare December 21, 2024 21:50
@renovate renovate bot force-pushed the renovate/numpy-2.x branch 2 times, most recently from f46a008 to f593f3b Compare January 19, 2025 01:28
@renovate renovate bot changed the title chore(deps): update dependency numpy to v2.2.1 chore(deps): update dependency numpy to v2.2.2 Jan 19, 2025
@renovate renovate bot changed the title chore(deps): update dependency numpy to v2.2.2 chore(deps): update dependency numpy to v2.2.2 - autoclosed Jan 27, 2025
@renovate renovate bot closed this Jan 27, 2025
@renovate renovate bot changed the title chore(deps): update dependency numpy to v2.2.2 - autoclosed chore(deps): update dependency numpy to v2.2.2 Jan 31, 2025
@renovate renovate bot reopened this Jan 31, 2025
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from a8ab2a1 to f593f3b Compare January 31, 2025 02:33
@renovate renovate bot changed the title chore(deps): update dependency numpy to v2.2.2 chore(deps): update dependency numpy to v2.2.3 Feb 13, 2025
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from f593f3b to c37ad9a Compare February 13, 2025 18:11
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from c37ad9a to dda9fc6 Compare March 4, 2025 21:34
@renovate renovate bot changed the title chore(deps): update dependency numpy to v2.2.3 fix(deps): update dependency numpy to v2.2.3 Mar 4, 2025
@fabclmnt fabclmnt force-pushed the renovate/numpy-2.x branch from dda9fc6 to 7490060 Compare March 4, 2025 23:17
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 7490060 to f08dd8f Compare March 11, 2025 04:47
@renovate renovate bot changed the title fix(deps): update dependency numpy to v2.2.3 fix(deps): update dependency numpy to v2.2.3 - autoclosed Mar 12, 2025
@renovate renovate bot closed this Mar 12, 2025
@renovate renovate bot changed the title fix(deps): update dependency numpy to v2.2.3 - autoclosed fix(deps): update dependency numpy to v2.2.3 Mar 18, 2025
@renovate renovate bot reopened this Mar 18, 2025
@renovate renovate bot changed the title fix(deps): update dependency numpy to v2.2.3 fix(deps): update dependency numpy to v2.2.4 Mar 18, 2025
@renovate renovate bot force-pushed the renovate/numpy-2.x branch 2 times, most recently from 163799c to fef24e1 Compare March 18, 2025 18:30
@renovate renovate bot changed the title fix(deps): update dependency numpy to v2.2.4 fix(deps): update dependency numpy to >=2.2.4,<3 Mar 18, 2025
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from fef24e1 to 42de6b5 Compare April 20, 2025 00:55
@renovate renovate bot changed the title fix(deps): update dependency numpy to >=2.2.4,<3 fix(deps): update dependency numpy to >=2.2.5,<3 Apr 20, 2025
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 42de6b5 to 1e3f7a9 Compare May 18, 2025 00:51
@renovate renovate bot changed the title fix(deps): update dependency numpy to >=2.2.5,<3 fix(deps): update dependency numpy to >=2.2.6,<3 May 18, 2025
@renovate renovate bot changed the title fix(deps): update dependency numpy to >=2.2.6,<3 fix(deps): update dependency numpy to >=2.2.6,<3 - autoclosed May 27, 2025
@renovate renovate bot closed this May 27, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant