@@ -58,8 +58,8 @@ from polyagamma import random_polyagamma
5858# generate a PG(1, 0) sample
5959o = random_polyagamma()
6060
61- # Get a 5 by 10 array of PG(1, 2) variates.
62- o = random_polyagamma(z = 2 , size = ( 5 , 10 ) )
61+ # Get a 5 by 1 array of PG(1, 2) variates.
62+ o = random_polyagamma(z = 2 , size = 5 )
6363
6464# We can pass sequences as input. Numpy's broadcasting rules apply here.
6565# Get a 10 by 2 array where column 1 is PG(2, -10) and column 2 is PG(1, 10)
@@ -90,7 +90,7 @@ o = random_polyagamma(random_state=rng)
9090
9191# If one is using a `numpy.random.RandomState` instance instead of the `Generator`
9292# class, the object's underlying bitgenerator can be passed as the value of random_state
93- bit_gen = np.random.RandomState(12345 ).bit_generator
93+ bit_gen = np.random.RandomState(12345 )._bit_generator
9494o = random_polyagamma(random_state = bit_gen)
9595
9696# When passing a large input array for the shape parameter `h`, parameter value
@@ -148,7 +148,6 @@ For an example of how to use `polyagamma` in a C program, see [here][1].
148148
149149
150150## Dependencies
151- - Python >= 3.6
152151- Numpy >= 1.19.0
153152
154153
@@ -182,10 +181,10 @@ and `z`, using each method. We restrict `h` to integer values to accomodate the
182181` devroye ` method, which cannot be used for non-integer ` h ` . The version of the
183182package used to generate them is ` v1.3.1 ` .
184183
185- ![ ] ( ./scripts/img/perf_methods_0.0.svg ) | ![ ] ( ./scripts/img/perf_methods_2.5.svg )
184+ | ![ ] ( ./scripts/img/perf_methods_0.0.svg ) | ![ ] ( ./scripts/img/perf_methods_2.5.svg ) |
186185| --- | --- |
187186
188- ![ ] ( ./scripts/img/perf_methods_5.0.svg ) | ![ ] ( ./scripts/img/perf_methods_10.0.svg )
187+ | ![ ] ( ./scripts/img/perf_methods_5.0.svg ) | ![ ] ( ./scripts/img/perf_methods_10.0.svg ) |
189188| --- | --- |
190189
191190Generally:
@@ -205,10 +204,10 @@ sampler to the `pgdrawv` functions provided by the package. Below are runtime pl
205204samples for each value of ` h ` and ` z ` . Values of ` h ` range from 0.1 to 50, while ` z ` is set
206205to 0, 2.5, 5, and 10.
207206
208- ![ ] ( ./scripts/img/perf_samplers_0.0.svg ) | ![ ] ( ./scripts/img/perf_samplers_2.5.svg )
207+ | ![ ] ( ./scripts/img/perf_samplers_0.0.svg ) | ![ ] ( ./scripts/img/perf_samplers_2.5.svg ) |
209208| --- | --- |
210209
211- ![ ] ( ./scripts/img/perf_samplers_5.0.svg ) | ![ ] ( ./scripts/img/perf_samplers_10.0.svg )
210+ | ![ ] ( ./scripts/img/perf_samplers_5.0.svg ) | ![ ] ( ./scripts/img/perf_samplers_10.0.svg ) |
212211| --- | --- |
213212
214213It can be seen that when generating many samples at once for any given combination of
@@ -239,12 +238,12 @@ is ran on.
239238## Distribution Plots
240239Below is a visualization of the Cumulative distribution and density functions for
241240various values of the parameters.
242- ![ ] ( ./scripts/img/pdf.svg ) | ![ ] ( ./scripts/img/cdf.svg )
241+ | ![ ] ( ./scripts/img/pdf.svg ) | ![ ] ( ./scripts/img/cdf.svg ) |
243242| --- | --- |
244243
245244We can compare these plots to the Kernel density estimate and empirical CDF plots
246245generated from 20000 random samples using each of the available methods.
247- ![ ] ( ./scripts/img/kde.svg ) | ![ ] ( ./scripts/img/ecdf.svg )
246+ | ![ ] ( ./scripts/img/kde.svg ) | ![ ] ( ./scripts/img/ecdf.svg ) |
248247| --- | --- |
249248
250249
0 commit comments