"""
This project investigates [brief description of the biological context and goals].
your_project/
├── data/ # raw and processed data
├── scripts/ # analysis scripts (numbered)
├── figures/ # generated plots and visuals
├── results/ # intermediate result files
├── notebooks/ # exploratory Jupyter/RMarkdown notebooks
├── docs/ # documentation and manuscript text
├── README.md # this file
├── environment.yml # reproducible environment
conda env create -f environment.yml
conda activate EMAdown- 01_Preprocess_LuCa_and_AUCell_macs.ipynb – Load and QC the input data. Then, run AUCell for mac subtypes.
- 02_macs_predictions.R – Create HieFIT cell type prediction model.
- 03_inspect_ct_composition.R – Inspect cell type compositions across samples.
- 04_PB-and-DESeq2.ipynb – Perform DEG on pseudo-bulked profiles.
- 05_PB-DEG_inspect_results.R - Inspect DEG expressions across macrophages.
- 06_create_signature_matrix.R - Create cell type signature matrix for deconvolution with CiberSortX.
- 07_prepare_bulk-data.R - Fetch TCGA lung cancer bulk datasets and prepare.
- 08_deconvolute_bulk-data.R - Estimate macrophage composition of bulk RNAseq data.
- 09_run_survival_analysis.R - Correlate macrophage compositons with prognosis using Kaplan-Meier survival analysis.
to run sccoda scripts: conda activate sccoda-gpu
All key plots are saved in figures/. The naming follows the manuscript figure order (e.g., Figure1_PCA.png, Figure2_Volcano.pdf).
- All scripts use fixed random seeds.
- Software versions are logged via
sessionInfo()orpip freeze.
If you use this project, please cite: [Your paper or bioRxiv link] """