Skip to content

O!My Models (omymodels) is a library to generate Pydantic, Dataclasses, GinoORM Models, SqlAlchemy ORM, SqlAlchemy Core Table, Models from SQL DDL. And convert one models to another.

License

Notifications You must be signed in to change notification settings

Dracax/omymodels

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

O! My Models

badge1 badge2 badge3workflow

Try in Web-UI

Try the online O!MyModels converter or simply use it online: https://archon-omymodels-online.hf.space/ (A big thanks for that goes to https://github.com/archongum)

Examples

You can find usage examples in the example/ folder on GitHub: https://github.com/xnuinside/omymodels/tree/main/example

About library

O! My Models (omymodels) is a library that allow you to generate different ORM & pure Python models from SQL DDL or convert one models type to another (exclude SQLAlchemy Table, it does not supported yet by py-models-parser).

Supported Models:

How to install

    pip install omymodels

How to use

From Python code

Create Models from DDL

By default method create_models generates GinoORM models. Use the argument models_type to specify output format:

  • 'pydantic' - Pydantic v1 models (uses Optional[X])
  • 'pydantic_v2' - Pydantic v2 models (uses X | None syntax, dict | list for JSON)
  • 'sqlalchemy' - SQLAlchemy ORM models
  • 'sqlalchemy_core' - SQLAlchemy Core Tables
  • 'dataclass' - Python Dataclasses
  • 'sqlmodel' - SQLModel models
  • 'openapi3' - OpenAPI 3 (Swagger) schema definitions

A lot of examples in tests/ - https://github.com/xnuinside/omymodels/tree/main/tests.

Pydantic v1 example

from omymodels import create_models


ddl = """
CREATE table user_history (
     runid                 decimal(21) null
    ,job_id                decimal(21)  null
    ,id                    varchar(100) not null
    ,user              varchar(100) not null
    ,status                varchar(10) not null
    ,event_time            timestamp not null default now()
    ,comment           varchar(1000) not null default 'none'
    ) ;
"""
result = create_models(ddl, models_type='pydantic')['code']

# output:
import datetime
from typing import Optional
from pydantic import BaseModel


class UserHistory(BaseModel):

    runid: Optional[int]
    job_id: Optional[int]
    id: str
    user: str
    status: str
    event_time: datetime.datetime
    comment: str

Pydantic v2 example

from omymodels import create_models


ddl = """
CREATE table user_history (
     runid                 decimal(21) null
    ,job_id                decimal(21)  null
    ,id                    varchar(100) not null
    ,user              varchar(100) not null
    ,status                varchar(10) not null
    ,event_time            timestamp not null default now()
    ,comment           varchar(1000) not null default 'none'
    ) ;
"""
result = create_models(ddl, models_type='pydantic_v2')['code']

# output:
from __future__ import annotations

import datetime
from pydantic import BaseModel


class UserHistory(BaseModel):

    runid: float | None = None
    job_id: float | None = None
    id: str
    user: str
    status: str
    event_time: datetime.datetime = datetime.datetime.now()
    comment: str = 'none'

Key differences in Pydantic v2 output:

  • Uses X | None instead of Optional[X]
  • Uses dict | list for JSON/JSONB types instead of Json
  • Includes from __future__ import annotations for Python 3.9 compatibility
  • Nullable fields automatically get = None default

To generate Dataclasses from DDL use argument models_type='dataclass'

for example:

    #  (same DDL as in Pydantic sample)
    result = create_models(ddl, schema_global=False, models_type='dataclass')['code']

    # and result will be: 
    import datetime
    from dataclasses import dataclass


    @dataclass
    class UserHistory:

        id: str
        user: str
        status: str
        runid: int = None
        job_id: int = None
        event_time: datetime.datetime = datetime.datetime.now()
        comment: str = 'none'

GinoORM example. If you provide an input like:

CREATE TABLE "users" (
  "id" SERIAL PRIMARY KEY,
  "name" varchar,
  "created_at" timestamp,
  "updated_at" timestamp,
  "country_code" int,
  "default_language" int
);

CREATE TABLE "languages" (
  "id" int PRIMARY KEY,
  "code" varchar(2) NOT NULL,
  "name" varchar NOT NULL
);

and you will get output:

    from gino import Gino


    db = Gino()


    class Users(db.Model):

        __tablename__ = 'users'

        id = db.Column(db.Integer(), autoincrement=True, primary_key=True)
        name = db.Column(db.String())
        created_at = db.Column(db.TIMESTAMP())
        updated_at = db.Column(db.TIMESTAMP())
        country_code = db.Column(db.Integer())
        default_language = db.Column(db.Integer())


    class Languages(db.Model):

        __tablename__ = 'languages'

        id = db.Column(db.Integer(), primary_key=True)
        code = db.Column(db.String(2))
        name = db.Column(db.String())

From cli

    omm path/to/your.ddl

    # for example
    omm tests/test_two_tables.sql

You can define target path where to save models with -t, --target flag:

    # for example
    omm tests/test_two_tables.sql -t test_path/test_models.py

If you want generate the Pydantic or Dataclasses models - just use flag -m or --models_type='pydantic' / --models_type='dataclass'

    omm /path/to/your.ddl -m dataclass

    # or 
    omm /path/to/your.ddl --models_type pydantic

Small library is used for parse DDL- https://github.com/xnuinside/simple-ddl-parser.

What to do if types not supported in O!MyModels and you cannot wait until PR will be approved

First of all, to parse types correct from DDL to models - they must be in types mypping, for Gino it exitst in this file:

omymodels/gino/types.py types_mapping

If you need to use fast type that not exist in mapping - just do a path before call code with types_mapping.update()

for example:

    from omymodels.models.gino import types
    from omymodels import create_models

    types.types_mapping.update({'your_type_from_ddl': 'db.TypeInGino'})

    ddl = "YOUR DDL with your custom your_type_from_ddl"

    models = create_models(ddl)

    #### And similar for Pydantic types

    from omymodels.models.pydantic import types  types_mapping
    from omymodels import create_models

    types.types_mapping.update({'your_type_from_ddl': 'db.TypeInGino'})

    ddl = "YOUR DDL with your custom your_type_from_ddl"

    models = create_models(ddl, models_type='pydantic')

Schema defenition

There is 2 ways how to define schema in Models:

  1. Globally in Gino() class and it will be like this:
    from gino import Gino
    db = Gino(schema="schema_name")

And this is a default way for put schema during generation - it takes first schema in tables and use it.

  1. But if you work with tables in different schemas, you need to define schema in each model in table_args. O!MyModels can do this also. Just use flag --no-global-schema if you use cli or put argument 'schema_global=False' to create_models() function if you use library from code. Like this:
    ddl = """
    CREATE TABLE "prefix--schema-name"."table" (
    _id uuid PRIMARY KEY,
    one_more_id int
    );
        create unique index table_pk on "prefix--schema-name"."table" (one_more_id) ;
        create index table_ix2 on "prefix--schema-name"."table" (_id) ;
    """
    result = create_models(ddl, schema_global=False)

And result will be this:

    from sqlalchemy.dialects.postgresql import UUID
    from sqlalchemy.schema import UniqueConstraint
    from sqlalchemy import Index
    from gino import Gino

    db = Gino()


    class Table(db.Model):

        __tablename__ = 'table'

        _id = db.Column(UUID, primary_key=True)
        one_more_id = db.Column(db.Integer())

        __table_args__ = (
                    
        UniqueConstraint(one_more_id, name='table_pk'),
        Index('table_ix2', _id),
        dict(schema="prefix--schema-name")
                )

OpenAPI 3 (Swagger) Support

O!MyModels supports bidirectional conversion with OpenAPI 3 schemas.

Generate OpenAPI 3 schema from DDL

from omymodels import create_models

ddl = """
CREATE TABLE users (
    id SERIAL PRIMARY KEY,
    username VARCHAR(100) NOT NULL,
    email VARCHAR(255),
    is_active BOOLEAN DEFAULT TRUE,
    created_at TIMESTAMP
);
"""

result = create_models(ddl, models_type="openapi3")
print(result["code"])

# Output:
# {
#   "components": {
#     "schemas": {
#       "Users": {
#         "type": "object",
#         "properties": {
#           "id": {"type": "integer"},
#           "username": {"type": "string", "maxLength": 100},
#           "email": {"type": "string", "maxLength": 255},
#           "is_active": {"type": "boolean", "default": true},
#           "created_at": {"type": "string", "format": "date-time"}
#         },
#         "required": ["id", "username"]
#       }
#     }
#   }
# }

Convert OpenAPI 3 schema to Python models

from omymodels import create_models_from_openapi3

schema = """
{
    "components": {
        "schemas": {
            "User": {
                "type": "object",
                "properties": {
                    "id": {"type": "integer"},
                    "name": {"type": "string"},
                    "email": {"type": "string"},
                    "created_at": {"type": "string", "format": "date-time"}
                },
                "required": ["id", "name"]
            }
        }
    }
}
"""

# Convert to Pydantic v2
result = create_models_from_openapi3(schema, models_type="pydantic_v2")
print(result)

# Output:
# from __future__ import annotations
#
# import datetime
# from pydantic import BaseModel
#
#
# class User(BaseModel):
#
#     id: int
#     name: str
#     email: str | None = None
#     created_at: datetime.datetime | None = None

YAML schemas are also supported (requires pyyaml):

pip install pyyaml

Custom Generators (Plugin System)

You can add support for your own model types without forking the repository.

Creating a Custom Generator

from omymodels import BaseGenerator, TypeConverter, register_generator, create_models

# Define type mapping
MY_TYPES = {
    "varchar": "String",
    "integer": "Integer",
    "boolean": "Boolean",
    "timestamp": "DateTime",
}

class MyGenerator(BaseGenerator):
    def __init__(self):
        super().__init__()
        self.type_converter = TypeConverter(MY_TYPES)

    def generate_model(self, table, singular=True, **kwargs):
        class_name = table.name.title().replace("_", "")
        lines = [f"class {class_name}(MyBaseModel):"]
        for column in table.columns:
            col_type = self.type_converter.convert(column.type)
            lines.append(f"    {column.name}: {col_type}")
        return "\n".join(lines)

    def create_header(self, tables, **kwargs):
        return "from my_framework import MyBaseModel\n"

# Register and use
register_generator("my_framework", MyGenerator)
result = create_models(ddl, models_type="my_framework")

Extending Built-in Generators

from omymodels import register_generator
from omymodels.models.pydantic_v2.core import ModelGenerator as PydanticV2Generator

class CustomPydanticGenerator(PydanticV2Generator):
    def create_header(self, *args, **kwargs):
        header = super().create_header(*args, **kwargs)
        return "from my_types import CustomType\n" + header

register_generator("my_pydantic", CustomPydanticGenerator)

See full examples in example/custom_generator.py and example/extend_builtin_generator.py.

TODO in next releases

  1. Add Sequence generation in Models (Gino, SQLAlchemy)
  2. Add support for Tortoise ORM (https://tortoise-orm.readthedocs.io/en/latest/)
  3. Add support for DjangoORM Models
  4. Add support for PyDAL Models (https://py4web.com/_documentation/static/en/chapter-07.html)

How to contribute

Please describe issue that you want to solve and open the PR, I will review it as soon as possible.

Any questions? Ping me in Telegram: https://t.me/xnuinside or mail [email protected]

If you see any bugs or have any suggestions - feel free to open the issue. Any help will be appritiated.

Appretiation & thanks

One more time, big 'thank you!' goes to https://github.com/archongum for Web-version: https://archon-omymodels-online.hf.space/

Changelog

v1.0.0

Breaking Changes

  1. Dropped support for Python 3.7 and 3.8
  2. Minimum required Python version is now 3.9

New Features

  1. Added support for Python 3.12 and 3.13
  2. Added pydantic_v2 models type with native Pydantic v2 syntax:
    • Uses X | None instead of Optional[X]
    • Uses dict | list for JSON/JSONB types instead of Json
    • Adds from __future__ import annotations for Python 3.9 compatibility
    • Nullable fields automatically get = None default
  3. Added plugin system for custom generators - add your own model types without forking:
    • register_generator() - register custom generator
    • unregister_generator() - remove custom generator
    • list_generators() - list all available generators
    • Base classes: BaseGenerator, ORMGenerator, DataModelGenerator
    • TypeConverter class for type mappings
    • Entry points support for auto-discovery
    • See examples: example/custom_generator.py, example/extend_builtin_generator.py
  4. Added OpenAPI 3 (Swagger) schema support:
    • Generate OpenAPI 3 schemas from DDL: create_models(ddl, models_type="openapi3")
    • Convert OpenAPI 3 schemas to Python models: create_models_from_openapi3(schema, models_type="pydantic_v2")
    • Supports JSON and YAML input (with pyyaml)
  5. Added tox configuration for local multi-version testing (py39-py313)
  6. Added pytest-cov for code coverage reporting

Improvements

  1. Updated GitHub Actions workflow with latest action versions (checkout@v4, setup-python@v5)
  2. Added ARCHITECTURE.md with project documentation
  3. Updated documentation with Pydantic v2 examples
  4. Reorganized types module with TypeConverter class
  5. Updated py-models-parser to version 1.0.0

Bug Fixes

  1. Fixed iterate_over_the_list() modifying list during iteration
  2. Fixed meaningless condition in dataclass generator

v0.17.0

Updates

  1. fix character varying type - xnuinside#59
  2. sqlalchemy import removed from generation in sqlmodels if it is not used
  3. = Field() - is not placed in SQLModel if there is no defaults or other settings to the field

v0.16.0

Updates

  1. Initial SQLModel Support

v0.15.1

Updates

  1. Foreign Key processing updates - xnuinside#55
  2. Move to simple-ddl-parser version 1.X

v0.14.0

Updates

  1. Python 3.11 support.

v0.13.0

New feature

  1. Added argument 'schema_global=' to support SQLAlchemy & Gino different table schemas xnuinside#41

v0.12.1

Improvements

  1. current_timestamp function processed now same was as "now()" function from ddl

v0.12.0

Fixes

  1. Now named arguments always went after positional. Fix for xnuinside#35

New feature:

  1. Availability to disable auto-name convertion - xnuinside#36. Now, if you want to keep names 1-to-1 as in your DDL file, you can set argument no_auto_snake_case=True and O!MyModels will do nothing with the table or column names.

v0.11.1

Improvements:

  1. added bytes type to pydantic - xnuinside#31
  2. parser version updated to the latest

v0.11.0

Fixes:

  1. MSSQL column & tables names in [] now is parsed validly - xnuinside#28
  2. names like 'users_WorkSchedule' now converted correctly to PascalCase like UsersWorkSchedule

v0.10.1

  1. Update simple-ddl-parser version to 0.21.2

v0.10.0

Improvements:

  1. Meta models moved to separate package - https://github.com/xnuinside/table-meta
  2. common module renamed to from_ddl, but anyway please use public API as imports from main module:

from omymodels import create_models or from omymodels import convert_models

Fixes:

  1. Fixed bunch of bugs in converter, but it stil in 'beta'.
  2. Previously you can generate models if was any tables in ddl. Now you can also generate Enum models if in ddl you have only CREATE TYPE statements.
  3. String enums now in any models types will be inherit from (str, Enum)

Features:

  1. Added converter feature to convert one model type to another (excluding SQLAlchemy Core (Tables)). Now with more tests for supported models, but still in Beta with bucnh of issues.

v0.9.0 Features:

  1. Added beta models converter from one type of models to another. To use models convertor:
from omymodels import convert_models


models_from = """

class MaterialType(str, Enum):

    article = "article"
    video = "video"


@dataclass
class Material:

    id: int
    title: str
    description: str
    link: str
    type: MaterialType
    additional_properties: Union[dict, list]
    created_at: datetime.datetime
    updated_at: datetime.datetime

"""

result = convert_models(models_from, models_type="gino")
print(result)

where models_type - type of models that you want to get as a result

  1. Now if O!MyModels does not know how to convert type - he just leave it as is.

Fixes:

  1. In Dataclass & Pydantic generators now Decimals & Floats converted to float (previously was int).

v0.8.4

  1. Now if tables was not found in input DDL - models generator raise NoTable error. if you want to have still silent exit if no tables, please use flag: exit_silent

v0.8.3

  1. Added fundamental concept of TableMetaModel - class that unifies metadata parsed from different classes/ORM models types/DDLs to one standard to allow easy way convert one models to another in next releases it will be used for converter from one type of models to another.
  2. Fixed issue: xnuinside#18 "NOW() not recognized as now()"
  3. Fixed issue: xnuinside#19 "Default value of now() always returns same time, use field for dataclass"

v0.8.1

  1. Parser version is updated (fixed several issues with generation)
  2. Fixed issue with Unique Constraint after schema in SQLAlchemy Core

v0.8.0

  1. Fix --defaults-off flag in cli
  2. Added support for SQLAlchemy Core Tables generating
  3. Added examples folder in github omymodels/example
  4. Fix issue with ForeignKey in SQLAlchemy

v0.7.0

  1. Added generation for SQLAlchemy models (defaults from DDLs are setting up as 'server_default')
  2. Added defaults for Pydantic models
  3. Added flag to generate Pydantic & Dataclass models WITHOUT defaults defaults_off=True (by default it is False). And cli flag --defaults-off
  4. Fixed issue with Enum types with lower case names in DDLs
  5. Fixed several issues with Dataclass generation (default with datetime & Enums)
  6. '"' do not remove from defaults now

v0.6.0

  1. O!MyModels now also can generate python Dataclass from DDL. Use argument models_type='dataclass' or if you use the cli flag --models_type dataclass or -m dataclass
  2. Added ForeignKey generation to GinoORM Models, added support for ondelete and onupdate

v0.5.0

  1. Added Enums/IntEnums types for Gino & Pydantic
  2. Added UUID type
  3. Added key schema_global in create_models method (by default schema_global = True). If you set schema_global=False schema if it exists in ddl will be defined for each table (model) in table args. This way you can have differen schemas per model (table). By default schema_global=True - this mean for all table only one schema and it is defined in db = Gino(schema="prefix--schema-name").
  4. If column is a primary key (primary_key=True) nullable argument not showed, because primary keys always are not null.
  5. To cli was added flag '--no-global-schema' to set schema in table_args.

v0.4.1

  1. Added correct work with table names contains multiple '-'

v0.4.0

  1. Added generation for Pydantic models from ddl
  2. Main method create_gino_models renamed to create_models

v0.3.0

  1. Generated Index for 'index' statement in table_args (not unique constrait as previously)
  2. Fix issue with column size as tuple (4,2)

v0.2.0

  1. Valid generating columns in models: autoincrement, default, type, arrays, unique, primary key and etc.
  2. Added creating table_args for indexes

About

O!My Models (omymodels) is a library to generate Pydantic, Dataclasses, GinoORM Models, SqlAlchemy ORM, SqlAlchemy Core Table, Models from SQL DDL. And convert one models to another.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Other 0.7%