Tiancheng Gu*,
Kaicheng Yang*,
Kaichen Zhang,
Xiang An,
Ziyong Feng,
Yueyi Zhang,
Weidong Cai,
Jiankang Deng,
Lidong Bing
2025/11/09: π₯UniME-v2 has been Accepted by AAAI2026 as Oral Present.2025/10/16: β¨We release the π Paper.2025/10/15: β¨We release the model, data in π€ Huggingface.2025/10/15: β¨We release the evaluation, training and demo code.
- Release the paper of UniME-v2
- Release data and model weight.
- Release the evaluation scripts.
- Release the training code.
- We introduce an MLLM-as-a-Judge pipeline for hard negative mining that uses the advanced understanding capabilities of MLLM to assess the semantic alignment of each query-candidate pair within a globally retrieved potential hard negative set.
- We present UniME-V2, a novel universal multimodal embedding model trained with an MLLM judgment based distribution alignment framework. By leveraging semantic matching scores as soft labels, the model effectively captures semantic differences between candidates, significantly enhancing its discriminative capability. Meanwhile, we propose UniME-V2-Reranker, a reranking model trained on high-quality, diverse hard negatives through a joint pairwise and listwise optimization approach.
conda create -n uniMEv2 python=3.10 -y
conda activate uniMEv2
pip install -r requirements.txt
# Optional: Install Flash Attention for acceleration
# wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
# pip install flash_attn-2.7.4.post1+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl# hep download data, Just reference, please download and correct them by yourself
cd data
# Download evaluation data
bash eval_data_download.sh
# Download training data
bash training_data_download.sh
# Download models
cd models
bash download_models.sh
| Embedding Model | MLLM-as-a-judge Score | Huggingface | MMEB Avg |
|---|---|---|---|
| UniME-V2(Qwen2VL-2B) | Qwen25VL-7B | 63.6 | |
| UniME-V2(Qwen2VL-2B) | InternVL3-8B | 58.5 | |
| UniME-V2(Qwen2VL-2B) | InternVL3-14B | 63.2 |
data
|-- MMEB_eval
|-- MMEB_train
|-- Urban1k
|-- coco_test
|-- sugar-crepe
|-- shareGPT4v
|-- flickr30k_test
|-- example_data.json
|-- train_data_InternVL3_14B_scores.json
|-- train_data_InternVL3_8B_scores.json
|-- train_data_Qwen25VL_7B_scores.json
|-- hfd.sh # for accelerate download
|-- eval_data_download.sh
|-- training_data_download.shmodels
|-- UniME-V2_LLaVA_onevision_8B
|-- UniME-V2_qwen2VL_2B
|-- UniME-V2_qwen2VL_7B
|-- UniME-v2-rerank_qwen25VL_7B
|-- hfd.sh # for accelerate downloadcd Embedding
# Training
bash shells/training/train_qwen2vl.sh # qwen2VL 2B or 7B
bash shells/training/train_llavaOV.sh # LLaVA-onevision 8B
# Testing
# Choose to do: Edit data path in Embedding/evaluation/utils/data_path.py
bash shells/testing_embedding/test_UniMEv2_qwen2vl_2B.sh
bash shells/testing_embedding/test_UniMEv2_qwen2vl_7B.sh
bash shells/testing_embedding/test_UniMEv2_llavaOV_8B.sh# Training
cd Rerank
bahs scripts/train_qwen25VL_7B.sh
# Testing
cd ../Embedding
bash shells/testing_rerank/test_qwen25VL_7B_full_emb2B.sh # rerank after UniME-v2(qwen2VL-2B)
bash shells/testing_rerank/test_qwen25VL_7B_full_emb7B.sh # rerank after UniME-v2(qwen2VL-7B)|-- MMEB_eval # Embedding: MMEB intermediate results for analysis
| |-- A-OKVQA_pred.txt
| |-- A-OKVQA_qry
| |-- A-OKVQA_rerank_topk.json
| |-- A-OKVQA_score.json
| |-- A-OKVQA_tgt
|-- MMEB_eval_conclude # Embedding: MMEB statistics results
| `-- MMEB_eval_conclude.txt
|-- UniME-V2-rerank_qwen25VL_7B # Rerank: MMEB intermediate results for analysis
| |-- A-OKVQA_rerank_scores
| |-- A-OKVQA_rerank_scores_final.json
|-- UniME-V2-rerank_qwen25VL_7B_conclude # Rerank: MMEB statistics results
| `-- MMEB_eval_conclude.txt
|-- Urban200K
| |-- Urban200K_image
| |-- Urban200K_image2text_rerank
| |-- Urban200K_image2text_rerank.json # Embedding: Urban200K I2T statistics results
| |-- Urban200K_text
| |-- Urban200K_text2image_rerank
| |-- Urban200K_text2image_rerank.json # Rerank: Urban200K T2I statistics results
| |-- recall_results.txt
| `-- rerank_top10.pt
|-- coco2014
|-- flickr30k
|-- sharegpt4v
`-- sugarcrepe
|-- add_att_image
|-- add_att_rerank
|-- add_att_text_neg
|-- add_att_text_pos
|-- add_obj_image
|-- add_obj_text_neg
|-- add_obj_text_pos
|-- recall_results.txt # Embedding: sugarcrepe statistics results
|-- add_obj_rerank
|-- recall_results_rerank.txt # Rerank: sugarcrepe statistics resultsgit clone https://github.com/deepglint/UniME-v2.git
cd UniME-v2import torch
from torch.nn import functional as F
from utils.utils import init_model_and_processor, prepare_stage_data, parse_answer_index
device="cuda"
embedding=False # adjust embedding model or rerank model
if embedding:
model_name="models/UniME-V2_qwen2VL_2B"
# model_name="models/UniME-V2_qwen2VL_7B"
# model_name="models/UniME-V2_LLaVA_onevision_8B"
text = "A man is crossing the street with a red car parked nearby."
image_path = "Figures/demo.png"
else:
model_name="models/UniME-v2-rerank_qwen25VL_7B"
text = ["A man is crossing the street with a red car parked nearby.", #! Target text
"A woman is walking her dog with a blue bicycle leaning nearby.",
"A child is riding a scooter past a green truck stopped nearby.",
"A couple is waiting for the bus beside a yellow taxi parked nearby.",
"A jogger is running along the path with a black motorcycle parked nearby."]
image_path = "Figures/demo.png"
model, processor = init_model_and_processor(model_name, device, embedding=embedding)
if embedding:
inputs_image, inputs_txt = prepare_stage_data(model_name, processor, text, image_path, embedding=embedding)
inputs_image = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs_image.items()}
inputs_txt = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs_txt.items()}
with torch.no_grad():
emb_text = model(**inputs_txt, output_hidden_states=True, return_dict=True).hidden_states[-1][:, -1, :]
emb_image = model(**inputs_image, output_hidden_states=True, return_dict=True).hidden_states[-1][:, -1, :]
emb_text = F.normalize(emb_text, dim=-1)
emb_image = F.normalize(emb_image, dim=-1)
Score = emb_image @ emb_text.T
print("Score: ", Score.item()) # qwen2VL 2B : Score: 0.62109375
else:
inputs = prepare_stage_data(model_name, processor, text, image_path, embedding=embedding)
inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=128, output_scores=True, return_dict_in_generate=True, do_sample=False).sequences
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs['input_ids'], generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Rerank Answer: ", parse_answer_index(output_text[0])) # qwen25VL 7B: Rerank Answer: 0| Team Member | |
|---|---|
| Tiancheng Gu | |
| Kaicheng Yang |
Many thanks to the code bases from
If you find this repository useful, please use the following BibTeX entry for citation.
@misc{gu2025unimev2mllmasajudgeuniversalmultimodal,
title={UniME-V2: MLLM-as-a-Judge for Universal Multimodal Embedding Learning},
author={Tiancheng Gu and Kaicheng Yang and Kaichen Zhang and Xiang An and Ziyong Feng and Yueyi Zhang and Weidong Cai and Jiankang Deng and Lidong Bing},
year={2025},
eprint={2510.13515},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2510.13515},
}@inproceedings{unime,
title={Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs},
author={Gu, Tiancheng and Yang, Kaicheng and Feng, Ziyong and Wang, Xingjun and Zhang, Yanzhao and Long, Dingkun and Chen, Yingda and Cai, Weidong and Deng, Jiankang},
booktitle={ACM MM},
year={2025}
}
β Don't forget to star this repository if you find it helpful!



