Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
179 changes: 179 additions & 0 deletions libcudacxx/include/cuda/std/__random/chi_squared_distribution.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
//
//===----------------------------------------------------------------------===//

#ifndef _CUDA_STD___CHI_SQUARED_DISTRIBUTION_H
#define _CUDA_STD___CHI_SQUARED_DISTRIBUTION_H

#include <cuda/std/detail/__config>

#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header

#include <cuda/std/__limits/numeric_limits.h>
#include <cuda/std/__random/gamma_distribution.h>
#include <cuda/std/__random/is_valid.h>

#include <cuda/std/__cccl/prologue.h>

_CCCL_BEGIN_NAMESPACE_CUDA_STD

template <class _RealType = double>
class chi_squared_distribution
{
static_assert(__libcpp_random_is_valid_realtype<_RealType>, "RealType must be a supported floating-point type");

public:
// types
using result_type = _RealType;

class param_type
{
private:
result_type __n_ = result_type{1};

public:
using distribution_type = chi_squared_distribution;

constexpr param_type() = default;

_CCCL_API constexpr explicit param_type(result_type __n)
: __n_{__n}
{}

[[nodiscard]] _CCCL_API constexpr result_type n() const noexcept
{
return __n_;
}

[[nodiscard]] friend _CCCL_API constexpr bool operator==(const param_type& __x, const param_type& __y) noexcept
{
return __x.__n_ == __y.__n_;
}
#if _CCCL_STD_VER <= 2017
[[nodiscard]] friend _CCCL_API constexpr bool operator!=(const param_type& __x, const param_type& __y) noexcept
{
return !(__x == __y);
}
#endif // _CCCL_STD_VER <= 2017
};

private:
param_type __p_{};

public:
// constructor and reset functions
constexpr chi_squared_distribution() noexcept = default;

_CCCL_API constexpr explicit chi_squared_distribution(result_type __n) noexcept
: __p_{param_type{__n}}
{}
_CCCL_API constexpr explicit chi_squared_distribution(const param_type& __p) noexcept
: __p_{__p}
{}
_CCCL_API void reset() noexcept {}

// generating functions
template <class _URng>
[[nodiscard]] _CCCL_API result_type operator()(_URng& __g)
{
return (*this)(__g, __p_);
}
template <class _URng>
[[nodiscard]] _CCCL_API result_type operator()(_URng& __g, const param_type& __p)
{
static_assert(__cccl_random_is_valid_urng<_URng>, "URng must meet the UniformRandomBitGenerator requirements");
return gamma_distribution<result_type>(__p.n() / 2, 2)(__g);
}

// property functions
[[nodiscard]] _CCCL_API constexpr result_type n() const noexcept
{
return __p_.n();
}

[[nodiscard]] _CCCL_API constexpr param_type param() const noexcept
{
return __p_;
}
_CCCL_API constexpr void param(const param_type& __p) noexcept
{
__p_ = __p;
}

[[nodiscard]] _CCCL_API static constexpr result_type min() noexcept
{
return result_type{0};
}
[[nodiscard]] _CCCL_API static constexpr result_type max() noexcept
{
return numeric_limits<result_type>::infinity();
}

[[nodiscard]] friend _CCCL_API constexpr bool
operator==(const chi_squared_distribution& __x, const chi_squared_distribution& __y) noexcept
{
return __x.__p_ == __y.__p_;
}
#if _CCCL_STD_VER <= 2017
[[nodiscard]] friend _CCCL_API constexpr bool
operator!=(const chi_squared_distribution& __x, const chi_squared_distribution& __y) noexcept
{
return !(__x == __y);
}
#endif // _CCCL_STD_VER <= 2017

#if !_CCCL_COMPILER(NVRTC)
template <class _CharT, class _Traits>
friend ::std::basic_ostream<_CharT, _Traits>&
operator<<(::std::basic_ostream<_CharT, _Traits>& __os, const chi_squared_distribution& __x)
{
using ostream_type = ::std::basic_ostream<_CharT, _Traits>;
using ios_base = typename ostream_type::ios_base;
const typename ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const ::std::streamsize __precision = __os.precision();
__os.flags(ios_base::dec | ios_base::left | ios_base::scientific);
__os.precision(numeric_limits<result_type>::max_digits10);
__os << __x.n();
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}

template <class _CharT, class _Traits>
friend ::std::basic_istream<_CharT, _Traits>&
operator>>(::std::basic_istream<_CharT, _Traits>& __is, chi_squared_distribution& __x)
{
using istream_type = ::std::basic_istream<_CharT, _Traits>;
using ios_base = typename istream_type::ios_base;
const typename ios_base::fmtflags __flags = __is.flags();
__is.flags(ios_base::dec | ios_base::skipws);
result_type __n;
__is >> __n;
if (!__is.fail())
{
__x.param(param_type{__n});
}
__is.flags(__flags);
return __is;
}
#endif // !_CCCL_COMPILER(NVRTC)
};

_CCCL_END_NAMESPACE_CUDA_STD

#include <cuda/std/__cccl/epilogue.h>

#endif // _CUDA_STD___CHI_SQUARED_DISTRIBUTION_H
1 change: 1 addition & 0 deletions libcudacxx/include/cuda/std/__random_
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@

#include <cuda/std/__random/bernoulli_distribution.h>
#include <cuda/std/__random/binomial_distribution.h>
#include <cuda/std/__random/chi_squared_distribution.h>
#include <cuda/std/__random/exponential_distribution.h>
#include <cuda/std/__random/gamma_distribution.h>
#include <cuda/std/__random/linear_congruential_engine.h>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests

// <random>

// template<class RealType = double>
// class chi_squared_distribution

#include <cuda/std/__random_>
#include <cuda/std/cassert>
#include <cuda/std/cmath>

#include "random_utilities/stats_functions.h"
#include "random_utilities/test_distribution.h"
#include "test_macros.h"

template <class T>
struct chi_squared_cdf
{
using P = typename cuda::std::chi_squared_distribution<T>::param_type;

__host__ __device__ double operator()(double x, const P& p) const
{
if (x <= 0.0)
{
return 0.0;
}

// Chi-squared distribution is a special case of gamma distribution
// Chi-squared(k) = Gamma(k/2, 2)
// CDF: P(k/2, x/2)
double k = p.n();
return incomplete_gamma(k / 2.0, x / 2.0);
}
};

template <class T>
__host__ __device__ void test()
{
// Can be true if/when cuda::std::lgamma is constexpr
[[maybe_unused]] const bool test_constexpr = false;
using D = cuda::std::chi_squared_distribution<T>;
using P = typename D::param_type;
using G = cuda::std::philox4x64;
cuda::std::array<P, 5> params = {P(1), P(2), P(3), P(5), P(10)};
test_distribution<D, true, G, test_constexpr>(params, chi_squared_cdf<T>{});
}

int main(int, char**)
{
test<double>();
test<float>();
return 0;
}
Loading