A modern web application for real-time object detection in images and videos using powerful YOLO models. Built with a FastAPI backend and a dynamic JavaScript frontend.
🎥 Watch Demo on YouTube
📁 GitHub Repository
- Real-time object detection (YOLO11)
- Upload image or video easily (drag & drop)
- Choose model type: Fast / Balanced / Accurate
- Smart streaming for video results
- Dark mode styled UI
- Reset and upload new file anytime
-
Clone this repo
git clone https://github.com/Raafat-Nagy/YOLO-Object-Detection-App.git cd YOLO-Object-Detection-App -
Install dependencies
pip install -r requirements.txt
-
Download YOLO models Put your models (e.g.
yolo11n.pt) in themodels/directory. Get them from: Ultralytics Official Models -
Run the app
uvicorn app.main:app --reload
-
Open
http://127.0.0.1:8000in your browser.
YOLO-Object-Detection-App/
├── app/ # FastAPI backend
│ ├── image_processor.py
│ ├── main.py
│ ├── model_loader.py
│ └── stream_processor.py
├── static/ # Frontend JS/CSS
│ ├── script.js
│ └── style.css
├── templates/ # HTML template
│ └── index.html
├── models/ # YOLO .pt models
│ ├── yolo11m
│ ├── yolo11n
│ └── yolo11s
├── requirements.txt
└── README.md
📸 Here’s how it works:
- FastAPI – lightweight Python backend
- Ultralytics YOLO – object detection engine
- JavaScript + HTML + CSS – frontend
- Font Awesome – icons
This project is licensed under the MIT License.
Feel free to reach out or contribute via pull request or issue!
