Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .github/workflows/python-testing.yml
Original file line number Diff line number Diff line change
Expand Up @@ -50,5 +50,8 @@ jobs:
pip install poetry
poetry install --extras dev

- name: Run type checking
run: poetry run mypy qumat/

- name: Run tests
run: poetry run pytest testing/ -v
26 changes: 25 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -12,17 +12,41 @@ dependencies = [
"cirq>=1.5.0,<1.6.0",
"amazon-braket-sdk>=1.102.6,<2.0",
"sympy>=1.14.0,<2.0",
"flask (>=3.1.2,<4.0.0)",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why do we need this?

]

[project.optional-dependencies]
dev = ["pytest>=8.1.1", "ruff>=0.13.1", "pre-commit>=3.0.0"]
dev = ["pytest>=8.1.1", "ruff>=0.13.1", "pre-commit>=3.0.0", "mypy>=1.0.0"]

[tool.pytest.ini_options]
testpaths = ["testing"]
python_files = "test_*.py"
python_functions = "test_*"
addopts = ["-v", "--tb=short"]

[tool.mypy]
Copy link
Member

@guan404ming guan404ming Nov 26, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you help explain why for these changes, thanks!

python_version = "3.10"
warn_return_any = true
warn_unused_configs = true
disallow_untyped_defs = false
disallow_incomplete_defs = false
check_untyped_defs = true
no_implicit_optional = true
warn_redundant_casts = true
warn_unused_ignores = true
strict_equality = true

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

While we are here, maybe we can also add things like

warn_unreachable = true
strict_optional = true

to detect dead code and check if we miss Optional for args that can take None


# Ignore missing type stubs for third-party quantum libraries
[[tool.mypy.overrides]]
module = [
"qiskit.*",
"qiskit_aer.*",
"cirq.*",
"braket.*",
"sympy.*"
]
ignore_missing_imports = true

[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
65 changes: 41 additions & 24 deletions qumat/amazon_braket_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Any, cast

import numpy as np
from braket.aws import AwsDevice
from braket.devices import LocalSimulator
from braket.circuits import Circuit, FreeParameter
from braket.devices import LocalSimulator


def initialize_backend(backend_config):
def initialize_backend(backend_config: dict[str, Any]) -> LocalSimulator | AwsDevice:
backend_options = backend_config["backend_options"]
simulator_type = backend_options.get("simulator_type", "default")
if simulator_type == "local":
Expand All @@ -33,55 +36,63 @@ def initialize_backend(backend_config):
return AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")


def create_empty_circuit(num_qubits: int | None = None):
def create_empty_circuit(num_qubits: int | None = None) -> Circuit:
circuit = Circuit()
if num_qubits is not None:
for i in range(num_qubits):
circuit.i(i)
return circuit


def apply_not_gate(circuit, qubit_index):
def apply_not_gate(circuit: Circuit, qubit_index: int) -> None:
circuit.x(qubit_index)


def apply_hadamard_gate(circuit, qubit_index):
def apply_hadamard_gate(circuit: Circuit, qubit_index: int) -> None:
circuit.h(qubit_index)


def apply_cnot_gate(circuit, control_qubit_index, target_qubit_index):
def apply_cnot_gate(circuit: Circuit, control_qubit_index: int, target_qubit_index: int) -> None:
circuit.cnot(control_qubit_index, target_qubit_index)


def apply_toffoli_gate(
circuit, control_qubit_index1, control_qubit_index2, target_qubit_index
):
circuit: Circuit,
control_qubit_index1: int,
control_qubit_index2: int,
target_qubit_index: int,
) -> None:
circuit.ccnot(control_qubit_index1, control_qubit_index2, target_qubit_index)


def apply_swap_gate(circuit, qubit_index1, qubit_index2):
def apply_swap_gate(circuit: Circuit, qubit_index1: int, qubit_index2: int) -> None:
circuit.swap(qubit_index1, qubit_index2)


def apply_cswap_gate(
circuit, control_qubit_index, target_qubit_index1, target_qubit_index2
):
circuit: Circuit,
control_qubit_index: int,
target_qubit_index1: int,
target_qubit_index2: int,
) -> None:
circuit.cswap(control_qubit_index, target_qubit_index1, target_qubit_index2)


def apply_pauli_x_gate(circuit, qubit_index):
def apply_pauli_x_gate(circuit: Circuit, qubit_index: int) -> None:
circuit.x(qubit_index)


def apply_pauli_y_gate(circuit, qubit_index):
def apply_pauli_y_gate(circuit: Circuit, qubit_index: int) -> None:
circuit.y(qubit_index)


def apply_pauli_z_gate(circuit, qubit_index):
def apply_pauli_z_gate(circuit: Circuit, qubit_index: int) -> None:
circuit.z(qubit_index)


def execute_circuit(circuit, backend, backend_config):
def execute_circuit(
circuit: Circuit, backend: LocalSimulator | AwsDevice, backend_config: dict[str, Any]
) -> dict[str, int]:
shots = backend_config["backend_options"].get("shots", 1)
parameter_values = backend_config.get("parameter_values", {})
if parameter_values and circuit.parameters:
Expand All @@ -95,57 +106,63 @@ def execute_circuit(circuit, backend, backend_config):
else:
task = backend.run(circuit, shots=shots)
result = task.result()
return result.measurement_counts
return cast(dict[str, int], result.measurement_counts)


# placeholder method for use in the testing suite
def get_final_state_vector(circuit, backend, backend_config):
def get_final_state_vector(
circuit: Circuit, backend: LocalSimulator | AwsDevice, backend_config: dict[str, Any]
) -> np.ndarray:
circuit.state_vector()
result = backend.run(circuit, shots=0).result()
state_vector = result.values[0]

return state_vector
return cast(np.ndarray, state_vector)


def draw_circuit(circuit):
def draw_circuit(circuit: Circuit) -> None:
# Unfortunately, Amazon Braket does not have direct support for drawing circuits in the same way
# as Qiskit and Cirq. You would typically visualize Amazon Braket circuits using external tools.
# For simplicity, we'll print the circuit object which gives some textual representation.
print(circuit)


def apply_rx_gate(circuit, qubit_index, angle):
def apply_rx_gate(circuit: Circuit, qubit_index: int, angle: float | str) -> None:
if isinstance(angle, (int, float)):
circuit.rx(qubit_index, angle)
else:
param = FreeParameter(angle)
circuit.rx(qubit_index, param)


def apply_ry_gate(circuit, qubit_index, angle):
def apply_ry_gate(circuit: Circuit, qubit_index: int, angle: float | str) -> None:
if isinstance(angle, (int, float)):
circuit.ry(qubit_index, angle)
else:
param = FreeParameter(angle)
circuit.ry(qubit_index, param)


def apply_rz_gate(circuit, qubit_index, angle):
def apply_rz_gate(circuit: Circuit, qubit_index: int, angle: float | str) -> None:
if isinstance(angle, (int, float)):
circuit.rz(qubit_index, angle)
else:
param = FreeParameter(angle)
circuit.rz(qubit_index, param)


def apply_u_gate(circuit, qubit_index, theta, phi, lambd):
def apply_u_gate(
circuit: Circuit, qubit_index: int, theta: float, phi: float, lambd: float
) -> None:
# U(θ, φ, λ) = Rz(φ) · Ry(θ) · Rz(λ)
circuit.rz(qubit_index, lambd)
circuit.ry(qubit_index, theta)
circuit.rz(qubit_index, phi)


def calculate_prob_zero(results, ancilla_qubit, num_qubits):
def calculate_prob_zero(
results: dict[str, int] | list[dict[str, int]], ancilla_qubit: int, num_qubits: int
) -> float:
"""
Calculate the probability of measuring the ancilla qubit in |0> state.

Expand Down
61 changes: 40 additions & 21 deletions qumat/cirq_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Any

import cirq
import numpy as np
import sympy


def initialize_backend(backend_config):
def initialize_backend(backend_config: dict[str, Any]) -> cirq.Simulator:
# Assuming 'simulator_type' specifies the type of simulator in Cirq
simulator_type = backend_config.get("backend_options", {}).get(
"simulator_type", "default"
Expand All @@ -31,7 +34,7 @@ def initialize_backend(backend_config):
return cirq.Simulator()


def create_empty_circuit(num_qubits: int | None = None):
def create_empty_circuit(num_qubits: int | None = None) -> cirq.Circuit:
circuit = cirq.Circuit()
if num_qubits is not None:
qubits = [cirq.LineQubit(i) for i in range(num_qubits)]
Expand All @@ -40,62 +43,72 @@ def create_empty_circuit(num_qubits: int | None = None):
return circuit


def apply_not_gate(circuit, qubit_index):
def apply_not_gate(circuit: cirq.Circuit, qubit_index: int) -> None:
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.X(qubit))


def apply_hadamard_gate(circuit, qubit_index):
def apply_hadamard_gate(circuit: cirq.Circuit, qubit_index: int) -> None:
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.H(qubit))


def apply_cnot_gate(circuit, control_qubit_index, target_qubit_index):
def apply_cnot_gate(
circuit: cirq.Circuit, control_qubit_index: int, target_qubit_index: int
) -> None:
control_qubit = cirq.LineQubit(control_qubit_index)
target_qubit = cirq.LineQubit(target_qubit_index)
circuit.append(cirq.CNOT(control_qubit, target_qubit))


def apply_toffoli_gate(
circuit, control_qubit_index1, control_qubit_index2, target_qubit_index
):
circuit: cirq.Circuit,
control_qubit_index1: int,
control_qubit_index2: int,
target_qubit_index: int,
) -> None:
control_qubit1 = cirq.LineQubit(control_qubit_index1)
control_qubit2 = cirq.LineQubit(control_qubit_index2)
target_qubit = cirq.LineQubit(target_qubit_index)
circuit.append(cirq.CCX(control_qubit1, control_qubit2, target_qubit))


def apply_swap_gate(circuit, qubit_index1, qubit_index2):
def apply_swap_gate(circuit: cirq.Circuit, qubit_index1: int, qubit_index2: int) -> None:
qubit1 = cirq.LineQubit(qubit_index1)
qubit2 = cirq.LineQubit(qubit_index2)
circuit.append(cirq.SWAP(qubit1, qubit2))


def apply_cswap_gate(
circuit, control_qubit_index, target_qubit_index1, target_qubit_index2
):
circuit: cirq.Circuit,
control_qubit_index: int,
target_qubit_index1: int,
target_qubit_index2: int,
) -> None:
control_qubit = cirq.LineQubit(control_qubit_index)
target_qubit1 = cirq.LineQubit(target_qubit_index1)
target_qubit2 = cirq.LineQubit(target_qubit_index2)
circuit.append(cirq.CSWAP(control_qubit, target_qubit1, target_qubit2))


def apply_pauli_x_gate(circuit, qubit_index):
def apply_pauli_x_gate(circuit: cirq.Circuit, qubit_index: int) -> None:
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.X(qubit))


def apply_pauli_y_gate(circuit, qubit_index):
def apply_pauli_y_gate(circuit: cirq.Circuit, qubit_index: int) -> None:
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.Y(qubit))


def apply_pauli_z_gate(circuit, qubit_index):
def apply_pauli_z_gate(circuit: cirq.Circuit, qubit_index: int) -> None:
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.Z(qubit))


def execute_circuit(circuit, backend, backend_config):
def execute_circuit(
circuit: cirq.Circuit, backend: cirq.Simulator, backend_config: dict[str, Any]
) -> list[dict[int, int]]:
# handle 0-qubit circuits before adding measurements
if not circuit.all_qubits():
shots = backend_config["backend_options"].get("shots", 1)
Expand All @@ -122,42 +135,48 @@ def execute_circuit(circuit, backend, backend_config):
return [result.histogram(key="result")]


def draw_circuit(circuit):
def draw_circuit(circuit: cirq.Circuit) -> None:
print(circuit)


def apply_rx_gate(circuit, qubit_index, angle):
def apply_rx_gate(circuit: cirq.Circuit, qubit_index: int, angle: float | str) -> None:
param = sympy.Symbol(angle) if isinstance(angle, str) else angle
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.rx(param).on(qubit))


def apply_ry_gate(circuit, qubit_index, angle):
def apply_ry_gate(circuit: cirq.Circuit, qubit_index: int, angle: float | str) -> None:
param = sympy.Symbol(angle) if isinstance(angle, str) else angle
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.ry(param).on(qubit))


def apply_rz_gate(circuit, qubit_index, angle):
def apply_rz_gate(circuit: cirq.Circuit, qubit_index: int, angle: float | str) -> None:
param = sympy.Symbol(angle) if isinstance(angle, str) else angle
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.rz(param).on(qubit))


def apply_u_gate(circuit, qubit_index, theta, phi, lambd):
def apply_u_gate(
circuit: cirq.Circuit, qubit_index: int, theta: float, phi: float, lambd: float
) -> None:
qubit = cirq.LineQubit(qubit_index)
circuit.append(cirq.rz(lambd).on(qubit))
circuit.append(cirq.ry(theta).on(qubit))
circuit.append(cirq.rz(phi).on(qubit))


def get_final_state_vector(circuit, backend, backend_config):
def get_final_state_vector(
circuit: cirq.Circuit, backend: cirq.Simulator, backend_config: dict[str, Any]
) -> np.ndarray:
simulator = cirq.Simulator()
result = simulator.simulate(circuit)
return result.final_state_vector


def calculate_prob_zero(results, ancilla_qubit, num_qubits):
def calculate_prob_zero(
results: list[dict[int, int]] | dict[int, int], ancilla_qubit: int, num_qubits: int
) -> float:
"""
Calculate the probability of measuring the ancilla qubit in |0> state.

Expand Down
Loading
Loading