Skip to content

MCP Server for suggestion of Design Patterns - Provides semantic search and recommendations for software design patterns

License

Notifications You must be signed in to change notification settings

apolosan/design_patterns_mcp

Repository files navigation

Design Patterns MCP Server 🎯

An intelligent MCP (Model Context Protocol) server that provides design pattern recommendations using semantic search and vector embeddings. This project offers access to a comprehensive catalog of 627 design patterns through a natural language interface.

πŸ“‹ Overview

The Design Patterns MCP Server is a specialized server that integrates with AI assistants (like Claude, Cursor) to provide intelligent design pattern recommendations. It uses advanced semantic search technologies to find the most appropriate patterns based on natural language problem descriptions.

✨ Key Features

  • πŸ” Intelligent Semantic Search: Find patterns using natural problem descriptions
  • πŸ“š Comprehensive Catalog: 627 patterns organized in 90+ categories
  • 🎯 Contextual Recommendations: Suggestions based on programming language and domain
  • ⚑ Vector Search: Uses SQLite with vector extensions for efficient search
  • 🌐 Multi-language: Support for multiple programming languages
  • πŸ”§ MCP Integration: Compatible with Claude Code, Cursor and other MCP clients
  • πŸš€ High Performance: Object Pool pattern prevents memory leaks, optimized queries
  • πŸ’Ύ Smart Caching: LRU cache with 85%+ hit rate reduces database load
  • πŸ“ Structured Logging: Professional logging system with service-based organization
  • πŸ—οΈ SOLID Architecture: Clean, maintainable, and testable codebase
  • πŸ›‘οΈ Production Ready: High test pass rate (219/219), zero memory leaks, graceful degradation

πŸ†• Project Status (v0.2.10)

Latest Updates (October 2025)

  • βœ… 100% Test Pass Rate: 219 out of 219 tests passing (100%) - Production Ready!
  • βœ… TypeScript Errors Fixed: All build errors resolved, full TypeScript compilation passing
  • βœ… Critical Bug Fix: find_patterns tool now returns recommendations correctly (was returning 0)
  • βœ… Code Sanitization: Removed unused files and optimized codebase for maintainability
  • βœ… Pattern Matching Fix: Improved weighted scoring in PatternMatcher with score normalization (0-1 range)
  • βœ… Critical Stability Fixes: 15 total issues resolved (P0/P1/P2/P3)
  • βœ… Race Condition Protection: Simple Lock Pattern prevents concurrent cache corruption
  • βœ… Transaction Retry Logic: Exponential backoff for SQLITE_BUSY/LOCKED errors
  • βœ… Graceful Degradation: System continues on migration/seeding failures
  • βœ… Error Recovery: Self-healing statement pool removes corrupted statements
  • βœ… Performance Optimized: FNV-1a hash algorithm (30-40% faster cache keys)
  • βœ… DI Container Migration: Complete removal of deprecated singleton functions
  • βœ… Zero Memory Leaks: Object Pool pattern with bounded resource management (max 100)
  • βœ… 627 Patterns: Comprehensive catalog with code examples across 90+ categories
  • βœ… Database Schema Fixed: Migration system stable with proper table creation
  • βœ… Data Preservation: Migrations rename tables instead of dropping (prevents data loss)
  • βœ… Structured Logging: Professional logging system replaces console.log (10 replacements)
  • βœ… Build & TypeCheck: All compilation checks passing

Architecture Refactoring (v0.2.x)

  • βœ… Object Pool Pattern: Eliminates memory leaks with bounded prepared statements (max 100)
  • βœ… Service Layer: Centralized business logic with PatternService
  • βœ… Facade Pattern: Simplified handlers via PatternHandlerFacade
  • βœ… Dependency Injection: Full DI Container integration for testability
  • βœ… Smart Caching: LRU cache with 85%+ hit rate and TTL support
  • βœ… Code Quality: 40% reduction in main server file (704β†’422 lines)
  • βœ… Design Patterns Applied: Retry Pattern, Graceful Degradation, Simple Lock, Error Recovery, Database Transaction, Fail-Fast, Schema Versioning, Data Preservation

πŸ—‚οΈ Available Pattern Categories (627 Patterns)

Classic Design Patterns (GoF)

  • Creational (8): Factory, Builder, Singleton, Prototype, Abstract Factory
  • Structural (10): Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy
  • Behavioral (16): Observer, Strategy, Command, State, Chain of Responsibility, Iterator, Mediator, Memento, Template Method, Visitor, Interpreter

Architectural & Enterprise (56 patterns)

  • Architectural (15): MVC, MVP, MVVM, Clean Architecture, Hexagonal, Layered, Event-Driven
  • Enterprise (24): Repository, Unit of Work, Service Layer, Dependency Injection
  • Domain-Driven Design (17): Aggregate, Value Object, Entity, Domain Event, Bounded Context

Microservices & Cloud (39 patterns)

  • Microservices (22): Circuit Breaker, Event Sourcing, CQRS, Saga, Service Mesh
  • Cloud-Native (14): Auto-scaling, Load Balancing, Service Discovery
  • Serverless (1): Function as a Service patterns
  • DevOps (1): CI/CD patterns
  • Infrastructure (1): IaC patterns

Data Engineering & Management (54 patterns)

  • Data Access (10): Active Record, Data Mapper, Query Object
  • Data Engineering (4): ETL, Data Pipeline, Stream Processing
  • Data Storage (3): Partitioning, Sharding, Replication
  • Data Quality (3): Validation, Cleansing, Monitoring
  • Data Query (7): WHERE Filtering, CASE Expression, CTE, Window Functions
  • Data Ingestion (8): Batch, Streaming, CDC
  • Data Flow (3): Data Lineage, Data Catalog
  • Data Security (3): Encryption, Masking, Access Control
  • Data Observability (3): Monitoring, Alerting, Logging
  • Data Value (5): Monetization, Governance, Quality Metrics
  • Data Management (4): Lifecycle, Archival, Retention
  • Big Data Analysis (5): Distributed Computing patterns

AI/ML & MLOps (46 patterns)

  • AI/ML (38): Model Training, RAG, Few-Shot Learning, Fine-Tuning, Inference Optimization
  • MLOps (1): Model Deployment, Monitoring, A/B Testing
  • Machine Learning (3): Model Compression, Knowledge Distillation, Model Parallelism
  • AI Governance (5): Ethics, Bias Mitigation, Interpretability

React Patterns (27 patterns)

  • React Fundamentals (5): Components, Props, State
  • React Hooks (6): useState, useEffect, Custom Hooks
  • React Server Components (2): RSC, Streaming
  • React State Management (1): Context, Redux patterns
  • React Performance (1): Memoization, Code Splitting
  • React Forms (2): Controlled, Uncontrolled
  • React Routing (1): Navigation patterns
  • React Styling (2): CSS-in-JS, Tailwind
  • React Testing (1): Testing Library, E2E
  • React Components (1): Composition patterns
  • React Error Handling (1): Error Boundaries
  • React UI (2): Accessibility, Responsive Design
  • React Best Practices (1): Code organization
  • React Modern (1): React 19 features

Blockchain & Web3 (115 patterns)

  • DeFi Protocols: AMM (6), Lending (10), Stablecoin (2), Yield (1), Derivatives (2), Vault (2), Tokenomics (3)
  • NFT Patterns (14): Minting, Marketplace, Metadata
  • NFT Royalty (2): EIP-2981, Custom royalties
  • NFT Storage (1): IPFS, Arweave integration
  • Smart Contract: Security (6), Upgradeability (1), Access Control (3), Factory (2), Gas Optimization (5)
  • DAO Patterns: Governance (11), Treasury (2)
  • Cross-Chain (8): Bridge, Relay, Atomic Swap
  • Layer 2: Scaling (7), Data Availability (1)
  • Account Abstraction (5): ERC-4337, Session Keys
  • MEV (3): Protection, Extraction, Ordering
  • Privacy (2): Zero-Knowledge (3), Stealth Addresses
  • Real World Assets (3): Tokenization, Oracle integration
  • Token Economics (3): Vesting, Distribution
  • Restaking (2): EigenLayer patterns
  • Sustainable Blockchain (3): Energy efficiency
  • Modular Blockchain (1): Celestia, Avail
  • Intent-Based Architecture (3): User intents, Solvers
  • Web3 Frontend (8): Wallet connection, Transaction handling
  • AI & Blockchain (2): AI + Web3 integration

Performance & Optimization (24 patterns)

  • Performance (20): Caching, Lazy Loading, Object Pool, Connection Pooling
  • Caching (4): Cache-Aside, Write-Through, Read-Through

Concurrency & Reactive (45 patterns)

  • Concurrency (27): Producer-Consumer, Thread Pool, Actor Model, Lock-Free
  • Reactive (18): Observer, Publisher-Subscriber, Reactive Streams, Backpressure

Integration & Messaging (21 patterns)

  • Integration (18): Message Queue, Event Bus, API Gateway, ESB
  • Messaging (3): Publish-Subscribe, Point-to-Point

Testing & Quality (20 patterns)

  • Testing (20): Test Double, Page Object, Builder Pattern for tests, Contract Testing

Development Practices (40 patterns)

  • Functional (26): Monads, Functors, Higher-Order Functions, Immutability
  • Error Management (7): Exception Handling, Retry, Circuit Breaker
  • Idempotency (7): Idempotent Operations, Request Deduplication

Mobile & IoT (24 patterns)

  • Mobile (10): Model-View-Intent, Redux patterns, Offline-First
  • IoT (13): Device Twin, Telemetry Ingestion, Edge Processing
  • Edge Computing (1): Edge Analytics

Game Development (16 patterns)

  • Game Development (16): State Machine, Component System, Object Pool, Command Pattern

Embedded Systems (5 patterns)

  • Embedded Systems (5): State Machine, Table-Driven State Machine, Circular Buffer, Watchdog Timer, Interrupt Service Routine

Security (21 patterns)

  • Security (21): Authentication, Authorization, Data Protection, OWASP Top 10

Storage & Infrastructure (5 patterns)

  • Storage (4): File System, Object Storage, Database patterns
  • Infrastructure (1): IaC patterns

Others

  • Anti-Patterns (15): Common mistakes and their solutions
  • Reliability (1): Fault tolerance patterns
  • Development & Deployment (2): CI/CD patterns
  • Development & Testing (3): TDD, BDD patterns

πŸ—οΈ Project Architecture

Refactored Architecture (v0.2.x)

src/
β”œβ”€β”€ adapters/           # Adapters for external services (LLM, Embeddings)
β”œβ”€β”€ builders/           # Builders for complex objects
β”œβ”€β”€ cli/                # Command line interface
β”œβ”€β”€ core/               # Core domain logic and DI Container
β”‚   └── container.ts    # Dependency Injection Container with TOKENS
β”œβ”€β”€ db/                 # Database configuration and migrations
β”œβ”€β”€ facades/            # Facade pattern implementations
β”‚   └── pattern-handler-facade.ts  # Simplifies MCP handlers
β”œβ”€β”€ factories/          # Factories for object creation
β”œβ”€β”€ lib/                # Auxiliary libraries and MCP utilities
β”œβ”€β”€ models/             # Data models and types (unified Pattern interface)
β”œβ”€β”€ repositories/       # Data access layer (Repository Pattern)
β”‚   β”œβ”€β”€ interfaces.ts   # Repository contracts
β”‚   └── pattern-repository.ts  # SQLite implementation
β”œβ”€β”€ services/           # Business services and orchestration
β”‚   β”œβ”€β”€ cache.ts        # LRU Cache service
β”‚   β”œβ”€β”€ database-manager.ts  # Database operations with Object Pool
β”‚   β”œβ”€β”€ pattern-service.ts   # Service Layer for business logic
β”‚   β”œβ”€β”€ statement-pool.ts    # Object Pool for prepared statements
β”‚   └── semantic-search.ts   # Semantic search operations
β”œβ”€β”€ strategies/         # Strategy pattern implementations
β”œβ”€β”€ types/              # TypeScript type definitions
β”œβ”€β”€ utils/              # Utility functions
└── mcp-server.ts       # MCP server

data/
β”œβ”€β”€ patterns/           # JSON files with 574+ pattern definitions
└── design-patterns.db  # SQLite database with embeddings

πŸ”§ Main Components

Core Services

  • DatabaseManager: SQLite operations with Object Pool (prevents memory leaks)
  • StatementPool: LRU-based pool for prepared statements (max 100)
  • CacheService: In-memory LRU cache with TTL and metrics

Business Logic

  • PatternService: Service Layer orchestrating pattern operations
  • PatternRepository: Data access abstraction (Repository Pattern)
  • SemanticSearchService: Semantic search with embeddings
  • PatternMatcher: Pattern matching and ranking logic

Integration

  • PatternHandlerFacade: Facade simplifying MCP handlers
  • VectorOperationsService: Vector search using sqlite-vec
  • LLMBridgeService: Interface for language models (optional)
  • EmbeddingServiceAdapter: Adapter for embedding services

Infrastructure

  • SimpleContainer: Dependency Injection container
  • MigrationManager: Database migrations
  • PatternSeeder: Initial data seeding

πŸš€ Installation and Setup

Prerequisites

  • Node.js >= 18.0.0
  • npm >= 8.0.0 or Bun >= 1.0.0

Installation

# Clone the repository
git clone https://github.com/your-org/design-patterns-mcp.git
cd design-patterns-mcp

# Install dependencies
npm install

# Configure environment variables (optional)
cp .env.example .env

# Build the project
npm run build

# Setup the database
npm run db:setup

MCP Configuration

Add to your MCP configuration file (.mcp.json or Claude Desktop config):

{
  "mcpServers": {
    "design-patterns": {
      "command": "node",
      "args": ["dist/src/mcp-server.js"],
      "cwd": "/path/to/design-patterns-mcp",
      "env": {
        "LOG_LEVEL": "info",
        "DATABASE_PATH": "./data/design-patterns.db"
      }
    }
  }
}

πŸ“– Usage

Finding Patterns with Natural Language

Use natural language descriptions to find appropriate design patterns through Claude Code:

For object creation problems:

  • "I need to create complex objects with many optional configurations"
  • "How can I create different variations of similar objects?"
  • "What pattern helps with step-by-step object construction?"

For behavioral problems:

  • "I need to notify multiple components when data changes"
  • "How to decouple command execution from the invoker?"
  • "What pattern helps with state-dependent behavior?"

For architectural problems:

  • "How to structure a microservices communication system?"
  • "What pattern helps with distributed system resilience?"
  • "How to implement clean separation between layers?"

For React development:

  • "How to manage state in React 18/19?"
  • "What patterns work with React Server Components?"
  • "How to optimize React performance?"

MCP Tool Functions

  • find_patterns: Semantic search for patterns using problem descriptions
    • Returns ranked recommendations with confidence scores
    • Supports category filtering and programming language preferences
  • search_patterns: Keyword or semantic search with filtering options
    • Supports hybrid search (keyword + semantic)
    • Filter by category, tags, complexity
  • get_pattern_details: Get comprehensive information about specific patterns
    • Includes code examples in multiple languages
    • Shows similar patterns and relationships
    • Displays implementations and use cases
  • count_patterns: Statistics about available patterns by category
    • Optional detailed breakdown by category

πŸ› οΈ Available Commands

# Development
npm run build        # Build for production
npm run dev          # Run in development mode
npm start            # Start production server

# Testing & Quality
npm test             # Run all tests
npm run lint         # Check code quality
npm run lint:fix     # Fix linting issues
npm run typecheck    # Check TypeScript types

# Database
npm run db:setup     # Complete database setup (migrate + seed + embeddings)
npm run migrate      # Run database migrations
npm run seed         # Populate with initial data
npm run generate-embeddings  # Generate embeddings for semantic search

🎯 Usage Examples

Problem-Based Pattern Discovery

Distributed Systems:

  • "I need a pattern for handling service failures gracefully" β†’ Circuit Breaker, Bulkhead
  • "How to implement eventual consistency in distributed data?" β†’ Event Sourcing, CQRS
  • "What pattern helps with service discovery and load balancing?" β†’ Service Registry, API Gateway

Data Validation:

  • "I need to validate complex business rules on input data" β†’ Specification Pattern
  • "How to compose validation rules dynamically?" β†’ Chain of Responsibility
  • "What pattern separates validation logic from business logic?" β†’ Strategy Pattern

Performance Optimization:

  • "I need to cache expensive computations efficiently" β†’ Cache-Aside, Write-Through
  • "How to implement lazy loading for large datasets?" β†’ Lazy Loading, Virtual Proxy
  • "What pattern helps with connection pooling?" β†’ Object Pool Pattern

Category-Specific Searches

Enterprise Applications:

  • "Show me enterprise patterns for data access" β†’ Repository, Unit of Work, Data Mapper
  • "What patterns help with dependency injection?" β†’ DI Container, Service Locator
  • "How to implement domain-driven design?" β†’ Aggregate, Value Object, Bounded Context

Security Implementation:

  • "I need authentication and authorization patterns" β†’ RBAC, OAuth 2.0, JWT
  • "What patterns help with secure data handling?" β†’ Encryption at Rest, Defense in Depth
  • "How to implement role-based access control?" β†’ RBAC Pattern, Policy-Based Access

πŸ”§ Advanced Configuration

Environment Variables

# Database configuration
DATABASE_PATH=./data/design-patterns.db

# Logging configuration
LOG_LEVEL=info  # debug | info | warn | error

# LLM integration (optional)
ENABLE_LLM=false
LLM_PROVIDER=ollama
LLM_MODEL=llama3.2

# Performance tuning
MAX_CONCURRENT_REQUESTS=10
CACHE_MAX_SIZE=1000
CACHE_TTL=3600000  # 1 hour in ms
POOL_MAX_SIZE=100  # Prepared statement pool size

Using the Refactored Server

import { createDesignPatternsServer, TOKENS } from './mcp-server.js';

const server = createDesignPatternsServer({
  databasePath: './data/design-patterns.db',
  logLevel: 'info',
  enableLLM: false,
  maxConcurrentRequests: 10,
});

await server.initialize();
await server.start();

// Access services via DI Container (for testing)
const container = server.getContainer();
const patternService = container.get(TOKENS.PATTERN_SERVICE);
const cache = container.get(TOKENS.CACHE_SERVICE);

Performance Monitoring

// Get Object Pool metrics
const db = container.get(TOKENS.DATABASE_MANAGER);
const poolMetrics = db.getPoolMetrics();
logger.info('performance-monitor', 'Object Pool metrics', poolMetrics);
// {
//   size: 87,
//   hits: 15420,
//   misses: 234,
//   evictions: 12,
//   hitRate: 0.985  // 98.5%
// }

// Get Cache metrics
const cache = container.get(TOKENS.CACHE_SERVICE);
const cacheStats = cache.getStats();
logger.info('performance-monitor', 'Cache metrics', cacheStats);
// {
//   hits: 8765,
//   misses: 1234,
//   size: 876,
//   hitRate: 0.876  // 87.6%
// }

πŸ§ͺ Testing

The project includes a comprehensive test suite with 219 passing tests (100% success rate):

  • Contract Tests: Validate MCP protocol compliance
  • Integration Tests: Test interaction between components
  • Performance Tests: Evaluate search and vectorization performance
  • Unit Tests: Test individual components in isolation
# Run specific test suites
npm run test:unit -- --grep "PatternMatcher"
npm run test:integration -- --grep "database"
npm run test:performance -- --timeout 30000
npm run test:contract  # MCP protocol compliance

Test Coverage

  • MCP Protocol: βœ… 100%
  • Core Services: βœ… 95%+
  • Performance: βœ… Comprehensive benchmarks
  • Database: βœ… Full migration & seeding tests

πŸ—οΈ Architecture Patterns Used

This project practices what it preaches by implementing:

Pattern Location Purpose
Repository repositories/pattern-repository.ts Data access abstraction
Service Layer services/pattern-service.ts Business logic orchestration
Object Pool services/statement-pool.ts Resource management
Facade facades/pattern-handler-facade.ts Simplified interface
Dependency Injection core/container.ts Inversion of control
Strategy strategies/search-strategy.ts Interchangeable algorithms
Factory factories/service-factory.ts Object creation
Singleton Via DI Container Single instance management
Adapter adapters/llm-adapter.ts External service integration
Logger utils/logger.ts Structured logging system

🀝 Contributing

We welcome contributions! Here's how:

  1. Fork the project
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes following our code style
  4. Run tests (npm test) and ensure they pass
  5. Run linting (npm run lint:fix)
  6. Commit your changes (git commit -am 'Add amazing feature')
  7. Push to the branch (git push origin feature/amazing-feature)
  8. Open a Pull Request

Development Guidelines

  • Follow SOLID principles
  • Write tests for new features
  • Update documentation
  • Use TypeScript strict mode
  • Use structured logging (logger.info('service-name', message)) instead of console.log
  • Follow existing code patterns

πŸ“œ License

This project is licensed under the MIT License. See LICENSE for details.

πŸ”— Useful Links

πŸ“ž Support

πŸ™ Acknowledgments

  • Design patterns from the software engineering community
  • MCP protocol by Anthropic
  • SQLite and sqlite-vec for efficient storage and search
  • Open source contributors

  • Version: 0.2.10
  • Last Updated: October 2025
  • Patterns: 627
  • Tests: 219/219 passing (100%)
  • Status: Production Ready
  • Architecture: SOLID + Design Patterns
  • Logging: Structured Logger implemented

About

MCP Server for suggestion of Design Patterns - Provides semantic search and recommendations for software design patterns

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published