DeepBrain DBME (Dynamic Brain Memory Expansion) - Research Repository.
Prerequisites:
- Python 3.10+
- CUDA-capable GPU (Recommended: A100 or similar for full reproduction, but code is adaptable)
- Conda (Miniconda/Anaconda)
# Clone the repository
git clone https://github.com/yourusername/deepbrain-dbme.git
cd deepbrain-dbme
# Create environment (approx 5-10 mins)
conda env create -f environment.yml
conda activate dbme
# Verify CUDA/PyTorch
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"We use Weights & Biases (WandB).
- Log in to WandB:
wandb login - Experiments will be logged to project
dbme-experiments.
To run a base experiment using the provided seed control and config:
# This uses the config at configs/base_config.yaml
# Ensure you are in the root directory
python -m src.main --config configs/base_config.yaml(Note: src.main is a placeholder for your entry point. Adjust according to your specific script implementations later).
configs/: YAML configuration files for experiments.src/: Source code.utils/: Utility scripts (seeding, logging, etc.).environment.yml: Conda environment spec.Dockerfile: Container definition.
Branching strategy:
main: Protected, stable.dev: Integration.feat/*: Feature branches.
Apache-2.0