Skip to content

deepbrain-labs/deepbrain-dbme

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

deepbrain-dbme

DeepBrain DBME (Dynamic Brain Memory Expansion) - Research Repository.

Quick Start (One-Click Reproduction)

1. Environment Setup

Prerequisites:

  • Python 3.10+
  • CUDA-capable GPU (Recommended: A100 or similar for full reproduction, but code is adaptable)
  • Conda (Miniconda/Anaconda)
# Clone the repository
git clone https://github.com/yourusername/deepbrain-dbme.git
cd deepbrain-dbme

# Create environment (approx 5-10 mins)
conda env create -f environment.yml
conda activate dbme

# Verify CUDA/PyTorch
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"

2. Experiment Tracking

We use Weights & Biases (WandB).

  1. Log in to WandB: wandb login
  2. Experiments will be logged to project dbme-experiments.

3. Running an Experiment

To run a base experiment using the provided seed control and config:

# This uses the config at configs/base_config.yaml
# Ensure you are in the root directory
python -m src.main --config configs/base_config.yaml

(Note: src.main is a placeholder for your entry point. Adjust according to your specific script implementations later).

Directory Structure

  • configs/: YAML configuration files for experiments.
  • src/: Source code.
  • utils/: Utility scripts (seeding, logging, etc.).
  • environment.yml: Conda environment spec.
  • Dockerfile: Container definition.

Development

Branching strategy:

  • main: Protected, stable.
  • dev: Integration.
  • feat/*: Feature branches.

License

Apache-2.0

About

A differentiable long-term memory system inspired by the hippocampus.

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages