Skip to content

here I'm learning, practicing & improving different AI techs and tools incorporating LLMs use & traning, Prompt Eng, RAG, Agents, Automatizations & more to my skills.

Notifications You must be signed in to change notification settings

fg0611/fran-with-ai

Repository files navigation

🤖 fran-with-ai

AI Learning & Experimentation Hub - A comprehensive repository for exploring AI technologies, automation workflows, and intelligent systems

AI LLM RAG Automation

🎯 About This Repository

This repository serves as a practical AI learning playground where I experiment with cutting-edge AI technologies, automation workflows, and intelligent systems. It's designed to showcase hands-on experience with:

  • 🧠 Large Language Models (LLMs)
  • 🔍 Retrieval-Augmented Generation (RAG)
  • 🤖 AI Agents & Autonomous Systems
  • 🔗 Workflow Automation with n8n
  • 🌐 Web Scraping & Data Collection
  • 💬 WhatsApp Automation & Webhooks
  • 📊 Vector Databases & Embeddings

📁 Repository Structure

fran-with-ai/
├── 🔧 n8n/                    # Workflow Automation & AI Orchestration
│   ├── archivos/               # Document storage & processing
│   │   ├── cargados/          # Processed documents for RAG
│   │   └── por cargar/        # Documents queue for processing
│   ├── n8n-qdrant/           # Vector database integration
│   ├── n8n_data/             # n8n workflow data & configs
│   ├── ollama_works_v1.json   # LLM integration workflow
│   ├── qdrant_embed_test.json # Embedding experiments
│   ├── qdrant_query.json     # Vector search workflows
│   └── docker-compose.yaml   # Containerized AI stack
│   
├── 🕷️ scrapping/              # Web Scraping & Data Collection
│   ├── drivers/               # Browser automation drivers
│   ├── archivos/              # Scraped data storage
│   ├── envios_usar.py         # WhatsApp automation script
│   ├── cargar_data.py         # Data processing utilities
│   └── *.csv                  # Extracted datasets
│   
├── 📱 wp-webhook/             # WhatsApp Integration & Webhooks
│   ├── index.js               # WhatsApp Web.js integration
│   ├── package.json           # Node.js dependencies
│   └── node_modules/          # (ignored) Dependencies
│   
└── 📝 .gitignore              # Clean repository management

🔧 Technologies & Tools

AI & Machine Learning

  • 🦙 Ollama - Local LLM deployment (Phi-3, Llama, etc.)
  • 🔍 Qdrant - Vector database for embeddings
  • 🧠 LangChain - AI agent frameworks
  • 📊 RAG Systems - Document retrieval & generation

Automation & Orchestration

  • 🔗 n8n - Visual workflow automation
  • 🐳 Docker - Containerized AI services
  • 🪝 Webhooks - Event-driven integrations
  • ⚡ API Integrations - External service connections

Web Technologies

  • 🌐 Node.js - Backend automation services
  • 🕷️ Selenium - Web scraping & browser automation
  • 📱 WhatsApp Web.js - WhatsApp integration
  • 🐍 Python - Data processing & ML scripts

Data & Storage

  • 📄 CSV/JSON - Structured data formats
  • 🗃️ Vector Databases - Semantic search capabilities
  • 📚 Document Processing - Text extraction & analysis

🚀 Key Projects & Experiments

1. 🧠 AI Agent Workflows (n8n)

  • LLM Integration: Direct integration with Ollama models
  • Memory Management: Conversational context retention
  • Webhook Endpoints: API-driven AI interactions
  • Multi-modal Processing: Text, document, and data analysis

2. 🔍 RAG Implementation

  • Document Ingestion: Automated text processing pipeline
  • Vector Embeddings: Semantic document representation
  • Intelligent Retrieval: Context-aware information extraction
  • Query Processing: Natural language to database queries

3. 📱 WhatsApp Automation

  • Web Scraping: Automated data collection from websites
  • Message Broadcasting: Bulk messaging with personalization
  • QR Authentication: Seamless WhatsApp Web integration
  • Contact Management: CSV-based contact processing

4. 🕷️ Intelligent Scraping

  • Dynamic Web Scraping: JavaScript-rendered content extraction
  • Data Processing: CSV manipulation and cleaning
  • Browser Automation: Human-like interaction patterns
  • Error Handling: Robust scraping with recovery mechanisms

🎓 Learning Objectives

This repository demonstrates practical experience with:

LLM Integration - Working with various language models
Vector Databases - Implementing semantic search systems
AI Agents - Building autonomous decision-making systems
Workflow Automation - Creating complex AI-driven processes
API Development - Building webhooks and integrations
Data Engineering - Processing and transforming datasets
Web Automation - Browser-based task automation
Containerization - Docker-based AI service deployment


🛠️ Getting Started

Prerequisites

  • 🐳 Docker & Docker Compose
  • 🟢 Node.js (v16+)
  • 🐍 Python (v3.8+)
  • 🦙 Ollama (for local LLM inference)

Quick Setup

  1. Clone the repository

    git clone https://github.com/your-username/fran-with-ai.git
    cd fran-with-ai
  2. Start AI Services

    cd n8n
    docker-compose up -d
  3. Install Dependencies

    # WhatsApp integration
    cd wp-webhook
    npm install
    
    # Python scraping tools
    cd ../scrapping
    pip install selenium pandas
  4. Access n8n Workflow Designer

    http://localhost:5678
    

📚 Use Cases & Applications

  • 🤖 Customer Service Automation - AI-powered WhatsApp bots
  • 📊 Data Intelligence - Automated data collection & analysis
  • 🔍 Document Q&A Systems - RAG-based information retrieval
  • ⚡ Business Process Automation - n8n workflow orchestration
  • 📱 Social Media Management - Automated messaging & engagement
  • 🧠 AI Research & Experimentation - Testing new models & techniques

🔮 Future Experiments

  • Multi-modal AI Agents - Vision + Language models
  • Advanced RAG Techniques - Graph-based retrieval
  • Voice AI Integration - Speech-to-text workflows
  • Fine-tuning Experiments - Custom model training
  • Edge AI Deployment - Optimized inference pipelines
  • Autonomous Data Pipelines - Self-managing ETL systems

🤝 Contributing

This is a personal learning repository, but feel free to:

  • 🐛 Report bugs or issues
  • 💡 Suggest improvements or new experiments
  • 🔄 Fork and create your own AI learning journey
  • 📚 Share knowledge and best practices

📄 License

This project is for educational and experimental purposes. Feel free to use and modify for your own learning!


🏷️ Tags

#AI #MachineLearning #LLM #RAG #Automation #n8n #WhatsApp #WebScraping #VectorDB #Ollama #LangChain #Python #NodeJS #Docker #Embeddings #AIAgents


⭐ Star this repo if you find it useful for your AI learning journey!

About

here I'm learning, practicing & improving different AI techs and tools incorporating LLMs use & traning, Prompt Eng, RAG, Agents, Automatizations & more to my skills.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published