Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
159 changes: 159 additions & 0 deletions dreamtime.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
#EJ's Version of dreamtime

import tensorflow.keras as keras
import tensorflow as tf
import numpy as np
import time

from Utils.utils import save_logs
from Utils.utils import calculate_metrics
from Utils.utils import save_test_duration


class Classifier_Dreamtime:

def __init__(self, output_directory, input_shape, nb_classes, verbose=False, build=True, batch_size=64, lr=0.001,
nb_filters=64, use_residual=True, use_bottleneck=True, depth=6, kernel_size=41, nb_epochs=1500):

self.output_directory = output_directory

self.nb_filters = nb_filters
self.use_residual = use_residual
self.use_bottleneck = use_bottleneck
self.depth = depth
self.kernel_size = kernel_size - 1
self.callbacks = None
self.batch_size = batch_size
self.bottleneck_size = 32
self.nb_epochs = nb_epochs
self.lr = lr
self.verbose = verbose

if build == True:
self.model = self.build_model(input_shape, nb_classes)
if (verbose == True):
self.model.summary()
self.model.save_weights(self.output_directory + 'model_init.hdf5')

def _dreamtime_module(self, input_tensor, stride=1, activation='linear'):

if self.use_bottleneck and int(input_tensor.shape[-1]) > self.bottleneck_size:
input_dreamtime = keras.layers.Conv1D(filters=self.bottleneck_size, kernel_size=1,
padding='same', activation=activation, use_bias=False)(input_tensor)
else:
input_dreamtime = input_tensor

# kernel_size_s = [3, 5, 8, 11, 17]
kernel_size_s = [self.kernel_size // (2 ** i) for i in range(3)]

conv_list = []

for i in range(len(kernel_size_s)):
conv_list.append(keras.layers.Conv1D(filters=self.nb_filters, kernel_size=kernel_size_s[i],
strides=stride, padding='same', activation=activation, use_bias=False)(
input_dreamtime))

max_pool_1 = keras.layers.MaxPool1D(pool_size=3, strides=stride, padding='same')(input_tensor)

conv_6 = keras.layers.Conv1D(filters=self.nb_filters, kernel_size=1,
padding='same', activation=activation, use_bias=False)(max_pool_1)

conv_list.append(conv_6)

x = keras.layers.Concatenate(axis=2)(conv_list)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.Activation(activation='relu')(x)
return x

def _shortcut_layer(self, input_tensor, out_tensor):
shortcut_y = keras.layers.Conv1D(filters=int(out_tensor.shape[-1]), kernel_size=1,
padding='same', use_bias=False)(input_tensor)
shortcut_y = keras.layers.BatchNormalization()(shortcut_y)

x = keras.layers.Add()([shortcut_y, out_tensor])
x = keras.layers.Activation('relu')(x)
return x

def build_model(self, input_shape, nb_classes):
input_layer = keras.layers.Input(input_shape)

x = input_layer
input_res = input_layer

for d in range(self.depth):

x = self._dreamtime_module(x)

if self.use_residual and d % 3 == 2:
x = self._shortcut_layer(input_res, x)
input_res = x

gap_layer = keras.layers.GlobalAveragePooling1D()(x)

output_layer = keras.layers.Dense(nb_classes, activation='softmax')(gap_layer)

model = keras.models.Model(inputs=input_layer, outputs=output_layer)

model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(self.lr),
metrics=['accuracy'])

reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.5, patience=50,
min_lr=0.0001)

file_path = self.output_directory + 'best_model.hdf5'

model_checkpoint = keras.callbacks.ModelCheckpoint(filepath=file_path, monitor='loss',
save_best_only=True)

self.callbacks = [reduce_lr, model_checkpoint]

return model

def fit(self, x_train, y_train, x_val, y_val, y_true):
if not tf.test.is_gpu_available:
print('error no gpu')
exit()
# x_val and y_val are only used to monitor the test loss and NOT for training

if self.batch_size is None:
mini_batch_size = int(min(x_train.shape[0] / 10, 16))
else:
mini_batch_size = self.batch_size

start_time = time.time()

hist = self.model.fit(x_train, y_train, batch_size=mini_batch_size, epochs=self.nb_epochs,
verbose=self.verbose, validation_data=(x_val, y_val), callbacks=self.callbacks)

duration = time.time() - start_time

self.model.save(self.output_directory + 'last_model.hdf5')

y_pred = self.predict(x_val, y_true, x_train, y_train, y_val,
return_df_metrics=False)

# save predictions
np.save(self.output_directory + 'y_pred.npy', y_pred)

# convert the predicted from binary to integer
y_pred = np.argmax(y_pred, axis=1)

df_metrics = save_logs(self.output_directory, hist, y_pred, y_true, duration)

keras.backend.clear_session()

return df_metrics

def predict(self, x_test, y_true, x_train, y_train, y_test, return_df_metrics=True):
start_time = time.time()
model_path = self.output_directory + 'best_model.hdf5'
model = keras.models.load_model(model_path)
y_pred = model.predict(x_test, batch_size=self.batch_size)
if return_df_metrics:
y_pred = np.argmax(y_pred, axis=1)
df_metrics = calculate_metrics(y_true, y_pred, 0.0)
return df_metrics
else:
test_duration = time.time() - start_time
save_test_duration(self.output_directory + 'test_duration.csv', test_duration)
return y_predd