This module performs parameter identifiability
analysis to calculate and plot confidence intervals based on a profile-likelihood.
The code is adapted from LMFIT, with custom
functions to select the range for parameter scanning and for plotting the profile
likelihood. The significance is assessed with the chi-squared distribution.
Optimization runs can be performed in parallel (using the multiprocessing module).
identifiability is a pure-Python module. The latest development version can be
installed with
$ pip install https://github.com/jmrohwer/identifiability/archive/refs/heads/main.zipThe latest stable release is available on PyPI:
$ pip install identifiabilityThe module can be used in combination with PySCeS for
simulation and parameter estimation of kinetic models using the CVODE solver. When
performing identifiability analysis in parallel using multiprocessing, additional
dependences are required; these can be installed with:
$ pip install "identifiability[pyscesmp]"NOTE:
The API of theidentifiabilitymodule has changed since version 0.5.0. Theconf_interval()helper function has been removed due to incompatibilities with Python 3.13. TheConfidenceIntervalclass now has to be instantiated directly.
For background, the reader is referred to the section on Calculation of confidence intervals in the LMFIT documentation.
To start the identifiability analysis, the user first needs to have performed a parameter estimation with LMFIT. The method for estimating confidence intervals takes an instantiated LMFIT Minimizer object and a MinimizerResult object as input.
A typical workflow would entail:
>>> from identifiability import ConfidenceInterval
>>> ci = ConfidenceInterval(mini, result)
>>> ci.calc_all_ci() # returns OrderedDict of parameter names and
# corresponding confidence intervals
>>> ci.plot_ci('a') # plots confidence interval for parameter 'a'
>>> ci.plot_all_ci() # plots confidence intervals for all parametersWhen using the Model wrapper of LMFIT
to perform the parameter estimation and model fit, the instantiated
ModelResult
object should be passed twice to the conf_interval() method, instead of the
Minimizer
and
MinimizerResult
(see above). In this case the function call would be:
>>> ci = ConfidenceInterval(modelresult, modelresult)Once a profile likelihood has been calculated, the same data can be used to calculate the confidence interval for a different probability, thus avoiding the computationally intensive re-calculation of the profile likelihood:
>>> ci.calc_all_ci(prob=0.8)The method for calculating the confidence intervals (calc_all_ci()) has several
additional options to specify the parameters to be varied, the probability for the
confidence interval, the limits for the parameter variation, and whether to use a
linear or logarithmic scale for the parameter variation. See below.
class ConfidenceInterval:
"""Class used to calculate the confidence interval."""
def __init__(self, minimizer, result, p_names=None):
"""Initialize the ConfidenceInterval class.
Parameters
----------
minimizer : Minimizer
The minimizer to use, holding objective function.
result : MinimizerResult
The result of running minimize().
p_names : list, optional
Names of the parameters for which the CI is calculated. If None
(default), the CI is calculated for every parameter.
Raises
------
MinimizerException
If there are less than two variables.
"""
def calc_all_ci(
self,
limits=0.5,
points=11,
prob=0.95,
method='leastsq',
log=False,
recalc=False,
mp=True,
):
"""Calculate all confidence intervals.
Parameters
----------
limits : float, optional
The limits (as a fraction of the original parameter value) within which
to vary the parameters for identifiability analysis (default is 0.5).
If ``log=False``, the parameter is varied from p*limits to p*(2 - limits),
where p is the original value.
If ``log=True``, the parameter is varied from p*limits to p/limits.
points : int, optional
The number of points for which to calculate the profile likelihood over
the given parameter range.
prob : float, optional
The probability for the confidence interval (<1). If None,
the default is 0.95 (95 % confidence interval).
method : str, optional
The lmfit mimimize() method to use (default='leastsq')
log : bool, optional
Whether to vary the parameter in a log (True) or a linear (False,
default) scale.
recalc : bool, optional
Whether to recalculate the traces and splines (default=False). If False,
the existing traces are used (useful for calculating the CIs for a different
probability). If True, the traces are recalculated. This is useful
if the `limits`, `points`, `method` or `log` parameters are changed.
mp : bool, optional
Run the optimization in parallel using ``multiprocessing`` (default=True)
Returns
-------
output : dict
A dictionary containing a list of ``(lower, upper)``-tuples containing
the confidence bounds for each parameter.
"""
def plot_all_ci(self):
"""Plot profile likelihoods with confidence intervals for all parameters."""
def plot_ci(self, para, ax=None):
"""Plot profile likelihood with confidence interval for single parameter.
Parameters
----------
para : str
The parameter name for which to plot the profile likelihood.
ax: matplotlib.axes.Axes, optional
Matplotlib Axes object to plot on. If None, a new figure and axes will be created.
"""
© Johann M. Rohwer, 2023–2025