Skip to content

jmrohwer/identifiability

Repository files navigation

identifiability - Parameter identifiability analysis in Python

This module performs parameter identifiability analysis to calculate and plot confidence intervals based on a profile-likelihood. The code is adapted from LMFIT, with custom functions to select the range for parameter scanning and for plotting the profile likelihood. The significance is assessed with the chi-squared distribution. Optimization runs can be performed in parallel (using the multiprocessing module).

Installation

identifiability is a pure-Python module. The latest development version can be installed with

$ pip install https://github.com/jmrohwer/identifiability/archive/refs/heads/main.zip

The latest stable release is available on PyPI:

$ pip install identifiability

The module can be used in combination with PySCeS for simulation and parameter estimation of kinetic models using the CVODE solver. When performing identifiability analysis in parallel using multiprocessing, additional dependences are required; these can be installed with:

$ pip install "identifiability[pyscesmp]"

API change

NOTE:
The API of the identifiability module has changed since version 0.5.0. The conf_interval() helper function has been removed due to incompatibilities with Python 3.13. The ConfidenceInterval class now has to be instantiated directly.

Basic usage

For background, the reader is referred to the section on Calculation of confidence intervals in the LMFIT documentation.

To start the identifiability analysis, the user first needs to have performed a parameter estimation with LMFIT. The method for estimating confidence intervals takes an instantiated LMFIT Minimizer object and a MinimizerResult object as input.

A typical workflow would entail:

>>> from identifiability import ConfidenceInterval
>>> ci = ConfidenceInterval(mini, result)
>>> ci.calc_all_ci()    # returns OrderedDict of parameter names and 
                        # corresponding confidence intervals 
>>> ci.plot_ci('a')     # plots confidence interval for parameter 'a'
>>> ci.plot_all_ci()    # plots confidence intervals for all parameters

When using the Model wrapper of LMFIT to perform the parameter estimation and model fit, the instantiated ModelResult object should be passed twice to the conf_interval() method, instead of the Minimizer and MinimizerResult (see above). In this case the function call would be:

>>> ci = ConfidenceInterval(modelresult, modelresult)

Once a profile likelihood has been calculated, the same data can be used to calculate the confidence interval for a different probability, thus avoiding the computationally intensive re-calculation of the profile likelihood:

>>> ci.calc_all_ci(prob=0.8)

The method for calculating the confidence intervals (calc_all_ci()) has several additional options to specify the parameters to be varied, the probability for the confidence interval, the limits for the parameter variation, and whether to use a linear or logarithmic scale for the parameter variation. See below.

Docstrings of the ConfidenceInterval class and selected methods

class ConfidenceInterval:
    """Class used to calculate the confidence interval."""

    def __init__(self, minimizer, result, p_names=None):
        """Initialize the ConfidenceInterval class.

        Parameters
        ----------
        minimizer : Minimizer
            The minimizer to use, holding objective function.
        result : MinimizerResult
            The result of running minimize().
        p_names : list, optional
            Names of the parameters for which the CI is calculated. If None
            (default), the CI is calculated for every parameter.

        Raises
        ------
        MinimizerException
            If there are less than two variables.
        """

    def calc_all_ci(
        self,
        limits=0.5,
        points=11,
        prob=0.95,
        method='leastsq',
        log=False,
        recalc=False,
        mp=True,
    ):
        """Calculate all confidence intervals.

        Parameters
        ----------
        limits : float, optional
            The limits (as a fraction of the original parameter value) within which
            to vary the parameters for identifiability analysis (default is 0.5).
            If ``log=False``, the parameter is varied from p*limits to p*(2 - limits),
            where p is the original value.
            If ``log=True``, the parameter is varied from p*limits to p/limits.
        points : int, optional
            The number of points for which to calculate the profile likelihood over
            the given parameter range.
        prob : float, optional
            The probability for the confidence interval (<1). If None,
            the default is 0.95 (95 % confidence interval).
        method : str, optional
            The lmfit mimimize() method to use (default='leastsq')
        log : bool, optional
            Whether to vary the parameter in a log (True) or a linear (False,
            default) scale.
        recalc : bool, optional
            Whether to recalculate the traces and splines (default=False). If False,
            the existing traces are used (useful for calculating the CIs for a different
            probability). If True, the traces are recalculated. This is useful
            if the `limits`, `points`, `method` or `log`  parameters are changed.
        mp : bool, optional
            Run the optimization in parallel using ``multiprocessing`` (default=True)

        Returns
        -------
        output : dict
            A dictionary containing a list of ``(lower, upper)``-tuples containing
            the confidence bounds for each parameter.
        """

    def plot_all_ci(self):
        """Plot profile likelihoods with confidence intervals for all parameters."""
        
    def plot_ci(self, para, ax=None):
        """Plot profile likelihood with confidence interval for single parameter.

        Parameters
        ----------
        para : str
            The parameter name for which to plot the profile likelihood.
        ax: matplotlib.axes.Axes, optional
            Matplotlib Axes object to plot on. If None, a new figure and axes will be created.
        """

© Johann M. Rohwer, 2023–2025

About

Parameter identifiability analysis in Python

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages