-
Notifications
You must be signed in to change notification settings - Fork 159
Binary Functions
Mariusz Gromada edited this page Jul 10, 2022
·
4 revisions
- please consider donation: DONATION
- or purchase the license via ORDER Page or INFIMA Online Store
| Key word | Category | Description | Example | Since |
|---|---|---|---|---|
| log | Binary Function | Logarithm function | log(a, b) | 1.0 |
| mod | Binary Function | Modulo function | mod(a, b) | 1.0 |
| C | Binary Function | Binomial coefficient function, number of k-combinations that can be drawn from n-elements set | C(n, k) | 1.0 |
| nCk | Binary Function | Binomial coefficient function, number of k-combinations that can be drawn from n-elements set | nCk(n, k) | 4.2 |
| Bern | Binary Function | Bernoulli numbers | Bern(m, n) | 1.0 |
| Stirl1 | Binary Function | Stirling numbers of the first kind | Stirl1(n, k) | 1.0 |
| Stirl2 | Binary Function | Stirling numbers of the second kind | Stirl2(n, k) | 1.0 |
| Worp | Binary Function | Worpitzky number | Worp(n, k) | 1.0 |
| Euler | Binary Function | Euler number | Euler(n, k) | 1.0 |
| KDelta | Binary Function | Kronecker delta | KDelta(i, j) | 1.0 |
| EulerPol | Binary Function | EulerPol | EulerPol(m, x) | 1.0 |
| Harm | Binary Function | Harmonic number | Harm(x, n) | 1.0 |
| rUni | Binary Function | Random variable - Uniform continuous distribution U(a,b), usage example: 2*rUni(2,10) | rUni(a, b) | 3.0 |
| rUnid | Binary Function | Random variable - Uniform discrete distribution U{a,b}, usage example: 2*rUnid(2,100) | rUnid(a, b) | 3.0 |
| round | Binary Function | Half-up rounding, usage examples: round(2.2, 0) = 2, round(2.6, 0) = 3, round(2.66,1) = 2.7 | round(x, n) | 3.0 |
| rNor | Binary Function | Random variable - Normal distribution N(m,s) m - mean, s - stddev, usage example: 3*rNor(0,1) | rNor(mean, stdv) | 3.0 |
| ndig | Binary Function | Number of digits representing the number in numeral system with given base | ndig(number, base) | 4.1 |
| dig10 | Binary Function | Digit at position 1 ... n (left -> right) or 0 ... -(n-1) (right -> left) - base 10 numeral system | dig10(num, pos) | 4.1 |
| factval | Binary Function | Prime decomposition - factor value at position between 1 ... nfact(n) - ascending order by factor value | factval(number, factorid) | 4.1 |
| factexp | Binary Function | Prime decomposition - factor exponent / multiplicity at position between 1 ... nfact(n) - ascending order by factor value | factexp(number, factorid) | 4.1 |
| root | Binary Function | N-th order root of a number | root(rootorder, number) | 4.1 |
| GammaL | Binary Function | Lower incomplete gamma special function, γ(s,x) | GammaL(s, x) | 4.2 |
| GammaU | Binary Function | Upper incomplete Gamma special function, Γ(s,x) | GammaU(s, x) | 4.2 |
| GammaP | Binary Function | Lower regularized P gamma special function, P(s,x) | GammaP(s, x) | 4.2 |
| GammaRegL | Binary Function | Lower regularized P gamma special function, P(s,x) | GammaRegL(s, x) | 4.2 |
| GammaQ | Binary Function | Upper regularized Q Gamma special function, Q(s,x) | GammaQ(s, x) | 4.2 |
| GammaRegU | Binary Function | Upper regularized Q Gamma special function, Q(s,x) | GammaRegU(s, x) | 4.2 |
| nPk | Binary Function | Number of k-permutations that can be drawn from n-elements set | nPk(n, k) | 4.2 |
| Beta | Binary Function | The Beta special function B(x,y), also called the Euler integral of the first kind | Beta(x, y) | 4.2 |
| logBeta | Binary Function | The Log Beta special function ln B(x,y), also called the Log Euler integral of the first kind, ln B(x,y) | logBeta(x, y) | 4.2 |
| pStud | Binary Function | Probability distribution function - Student's t-distribution | pStud(x, v) | 5.0 |
| cStud | Binary Function | Cumulative distribution function - Student's t-distribution | cStud(x, v) | 5.0 |
| qStud | Binary Function | Quantile function (inverse cumulative distribution function) - Student's t-distribution | qStud(p, v) | 5.0 |
| pChi2 | Binary Function | Probability distribution function - Chi-squared distribution | pChi2(x, k) | 5.0 |
| cChi2 | Binary Function | Cumulative distribution function - Chi-squared distribution | cChi2(x, k) | 5.0 |
| qChi2 | Binary Function | Quantile function (inverse cumulative distribution function) - Chi-squared distribution | qChi2(p, k) | 5.0 |
as of 2022-04-15
mXparser - Math Parser Java C# .NET (CLS) Library - a super easy, rich and flexible mathematical expressions parser for JAVA Android Kotlin C# .NET and C++ - Provided by Mariusz Gromada, for more information please visit: MathParser.org, MathSpace.pl, mXparser on GitHub pages, mXparser on SourceForge.
