Advanced denoising algorithms for M/EEG data in MNE-Python.
mne-denoise provides powerful signal denoising techniques for the MNE-Python ecosystem, including Denoising Source Separation (DSS) and ZapLine algorithms. These methods excel at extracting signals of interest by exploiting data structure rather than just variance.
- Linear DSS: Extract components based on reproducibility across trials or characteristic frequencies
- Iterative DSS: Powerful nonlinear separation for complex non-Gaussian sources
- 20+ Pluggable Denoisers: Spectral, temporal, periodic, and ICA-style bias functions
- Specialized Variants: TSR, SSVEP enhancement, narrowband oscillation extraction
- ZapLine: Efficient removal of power line noise (50/60 Hz) and harmonics
- ZapLine-plus: Fully adaptive mode with automatic frequency detection
- Per-chunk Processing: Handles non-stationary noise characteristics
- Quality Assurance: Built-in spectral checks to prevent over-cleaning
- MNE-Python: Works directly with
Raw,Epochs, andEvokedobjects ornumpyarrays. - Scikit-Learn API: Standard
fit(),transform(),fit_transform()interface - Visualization: Built-in plotting for components and cleaning results
pip install mne-denoisegit clone https://github.com/mne-tools/mne-denoise.git
cd mne-denoise
pip install -e ".[dev]"DSS finds spatial filters that maximize the ratio of reproducible (evoked) to total power:
import mne
from mne_denoise.dss import DSS, AverageBias
# Load your epoched data
epochs = mne.read_epochs("sample-epo.fif")
# Create DSS with trial-average bias
dss = DSS(bias=AverageBias(), n_components=5)
dss.fit(epochs)
# Option 1: Extract source time courses
sources = dss.transform(epochs)
# Option 2: Reconstruct denoised sensor data
cleaned_epochs = dss.transform(epochs, return_type="epochs")Isolate specific frequency bands (e.g., alpha rhythm):
from mne_denoise.dss import DSS, BandpassBias
# Create bandpass bias for alpha (8-12 Hz)
bias = BandpassBias(sfreq=epochs.info["sfreq"], freq=10, bandwidth=4)
dss = DSS(bias=bias, n_components=3)
alpha_sources = dss.fit_transform(epochs)Remove 50/60 Hz power line artifacts:
import mne
from mne_denoise.zapline import ZapLine
# Load continuous data
raw = mne.io.read_raw_fif("sample-raw.fif", preload=True)
# Standard mode: specify line frequency
zapline = ZapLine(sfreq=raw.info["sfreq"], line_freq=50.0)
cleaned_data = zapline.fit_transform(raw)
# Adaptive mode: automatic detection and per-chunk processing
zapline_plus = ZapLine(
sfreq=raw.info["sfreq"],
line_freq=None, # Auto-detect
adaptive=True,
)
cleaned = zapline_plus.fit_transform(raw)
print(f"Detected line frequency: {zapline_plus.detected_freq_} Hz")Full documentation is available at mne-tools.github.io/mne-denoise.
mne_denoise/
βββ dss/ # Denoising Source Separation
β βββ linear.py # Core DSS algorithm, DSS estimator
β βββ nonlinear.py # Iterative DSS, IterativeDSS estimator
β βββ denoisers/ # 20+ pluggable bias functions
β β βββ spectral.py # BandpassBias, LineNoiseBias
β β βββ temporal.py # TimeShiftBias, SmoothingBias
β β βββ periodic.py # CombFilterBias, PeakFilterBias
β β βββ ...
β βββ variants/ # Pre-built applications
β βββ tsr.py # Time-Shift Repeatability
β βββ ssvep.py # SSVEP enhancement
β βββ narrowband.py # Oscillation extraction
βββ zapline/ # Line noise removal
β βββ core.py # ZapLine estimator
β βββ adaptive.py # ZapLine-plus utilities
βββ viz/ # Visualization tools
# Run tests
pytest
# With coverage
pytest --cov=mne_denoise --cov-report=htmlWe welcome contributions! Please see CONTRIBUTING.md for guidelines.
# Development setup
git clone https://github.com/<your-username>/mne-denoise.git
cd mne-denoise
pip install -e ".[dev,docs]"
pre-commit installSΓ€relΓ€, J., & Valpola, H. (2005). Denoising source separation. Journal of Machine Learning Research, 6, 233-272.
de CheveignΓ©, A., & Simon, J. Z. (2008). Denoising based on spatial filtering. Journal of Neuroscience Methods, 171(2), 331-339.
de CheveignΓ©, A. (2020). ZapLine: A simple and effective method to remove power line artifacts. NeuroImage, 207, 116356.
Klug, M., & Kloosterman, N. A. (2022). Zapline-plus: A completely automatic and highly effective method for removing power line noise. Human Brain Mapping, 43(9), 2743-2758.
BSD 3-Clause License. See LICENSE for details.