Skip to content

nemarDatasets/nm000106

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

handwriting: Handwriting Recognition from EMG

Overview

Dataset: handwriting - Imagined handwriting from wrist-based surface electromyography Task: Air-writing (imagined handwriting without pen) Participants: 100 subjects Sessions: ~700 total (~7 per subject) Publication: Kaifosh et al., 2025 - "A generic non-invasive neuromotor interface for human-computer interaction" (Nature)

Purpose

This dataset captures wrist-based sEMG signals during imagined handwriting motions for text entry. Participants "write" prompted text with fingers together (as if holding an invisible pen) without any physical writing surface. Applications include AR/VR text input, mobile computing, and hands-free communication.

Dataset Details

Participants

  • Sample size: 100 participants
  • Demographics: Not available (marked as n/a)
  • Recording side: Dominant wrist
  • Sessions: Average 7 per participant

Hardware

  • Device: sEMG-RD (single wristband)
  • Channels: 16 (EMG0-EMG15)
  • Sampling rate: 2000 Hz
  • Reference: Bipolar differential

Recording Protocol

  1. Participant holds fingers together (as if holding pen)
  2. Prompted text appears on screen
  3. Participant "writes" the text in air
  4. Session duration: ~11 minutes
  5. Prompts per session: 96 phrases

Data Contents

Files per Session

sub-XXX/ses-XXX/emg/
├── sub-XXX_ses-XXX_task-handwriting_emg.edf
├── sub-XXX_ses-XXX_task-handwriting_emg.json
├── sub-XXX_ses-XXX_task-handwriting_channels.tsv
├── sub-XXX_ses-XXX_task-handwriting_events.tsv
└── sub-XXX_ses-XXX_electrodes.tsv

Events

  • Handwriting prompts: Text to be written
    • prompt_text: Displayed phrase
  • Stage boundaries: Posture changes (sitting/standing), session phases

Coordinate System

Single coordinate system at root (dominant wrist, percent units, no decimals)

Baseline Performance

Published Results (Kaifosh et al., 2025)

Generic Model (6,527 training participants):

  • Offline CER: >90% classification accuracy on held-out participants
  • Online performance: 20.9 words per minute (WPM)
  • Online CER: Median improvement from ~35% (practice) to ~25% (evaluation)

Personalized Model (20 min fine-tuning):

  • 16% improvement over generic model
  • Better performance for users with higher generic CER
  • Diminishing returns with more pretraining data

Comparison:

  • Open-loop handwriting (no pen): 25.1 WPM
  • sEMG handwriting: 20.9 WPM (83% of baseline)
  • Mobile phone keyboard: 36 WPM

Model architecture: MPF features + Conformer (attention mechanism)

Use Cases

  • Keyboard-free text entry: AR/VR, mobile devices
  • Silent communication: Private text input in public spaces
  • Personalization research: Few-shot learning, transfer learning
  • Sequence modeling: Character-level prediction with attention

Known Limitations

  • Single wrist (dominant hand only)
  • Handedness not recorded
  • Learning curve: Users improve with practice/coaching
  • Lower WPM than physical writing or typing

Citation

Kaifosh, P., Reardon, T.R., & CTRL-labs at Reality Labs. (2025).
A generic non-invasive neuromotor interface for human-computer interaction.
Nature, 645(8081), 702-711. https://doi.org/10.1038/s41586-025-09255-w

Data Curator

Yahya Shirazi SCCN (Swartz Center for Computational Neuroscience) INC (Institute for Neural Computation) University of California San Diego

Version History

v1.0 (2025-10-01): Initial BIDS conversion


BIDS Version: 1.11 | EMG-BIDS: BEP-042 | Updated: Oct 1, 2025