Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions sklearnbot/config_spaces/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,4 +9,5 @@
import sklearnbot.config_spaces.random_forest
import sklearnbot.config_spaces.sgd
import sklearnbot.config_spaces.svc
import sklearnbot.config_spaces.hist_gradient_boosting
from .bootstrap import get_available_config_spaces, get_config_space
72 changes: 72 additions & 0 deletions sklearnbot/config_spaces/hist_gradient_boosting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
import ConfigSpace


def get_hyperparameter_search_space(seed):
"""
Histogram Gradient Boosting search space based on a best effort using the scikit-learn
implementation.

Parameters
----------
seed: int
Random seed that will be used to sample random configurations

Returns
-------
cs: ConfigSpace.ConfigurationSpace
The configuration space object
"""
cs = ConfigSpace.ConfigurationSpace('sklearn.ensemble.HistGradientBoostingClassifier', seed)

imputation = ConfigSpace.hyperparameters.CategoricalHyperparameter(
name='columntransformer__numeric__imputer__strategy', choices=['mean', 'median', 'most_frequent'])

loss = ConfigSpace.hyperparameters.Constant(name='histgradientboostingclassifier__loss', value='auto')

learning_rate = ConfigSpace.hyperparameters.UniformFloatHyperparameter(
name='histgradientboostingclassifier__learning_rate', lower=0.001, upper=1, default_value=1, log=True)

max_iter = ConfigSpace.hyperparameters.UniformIntegerHyperparameter(
name='histgradientboostingclassifier__max_iter', lower=50, upper=500, default_value=100)

max_leaf_nodes = ConfigSpace.hyperparameters.UniformIntegerHyperparameter(
name='histgradientboostingclassifier__max_leaf_nodes', lower=2, upper=256, default_value=31)

max_depth = ConfigSpace.hyperparameters.UniformIntegerHyperparameter(
name='histgradientboostingclassifier__max_depth', lower=2, upper=20, default_value=None)

min_samples_leaf = ConfigSpace.hyperparameters.UniformIntegerHyperparameter(
name='histgradientboostingclassifier__min_samples_leaf', lower=1, upper=20, default_value=20)

l2_regularization = ConfigSpace.hyperparameters.UniformFloatHyperparameter(
name='histgradientboostingclassifier__l2_regularization', lower=1e-10, upper=1, default_value=0.0, log=True)

max_bins = ConfigSpace.hyperparameters.UniformFloatHyperparameter(
name='histgradientboostingclassifier__max_bins', lower=2, upper=512, default_value=256)

validation_fraction = ConfigSpace.UniformFloatHyperparameter(
name='histgradientboostingclassifier__validation_fraction', lower=0.1, upper=0.3, default_value=0.1)

n_iter_no_change = ConfigSpace.UniformIntegerHyperparameter(
name='histgradientboostingclassifier__n_iter_no_change', lower=1, upper=2048, default_value=None)

tol = ConfigSpace.UniformFloatHyperparameter(
name='histgradientboostingclassifier__tol', lower=1e-7, upper=1e-1, default_value=1e-7, log=True)

cs.add_hyperparameters([
imputation,
loss,
learning_rate,
max_iter,
max_leaf_nodes,
max_depth,
min_samples_leaf,
l2_regularization,
max_bins,
min_weight_fraction_leaf,
validation_fraction,
n_iter_no_change,
tol,
])

return cs