Skip to content

piotrkubala/vae-gan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VAE GAN

About

This repository contains an implementation of a Variational Autoencoder (VAE) combined with a Generative Adversarial Network (GAN) in PyTorch. The model is trained on the Flowers dataset to generate realistic floral images.

Architecture:

  • VAE Encoder: Maps input images to a latent space.
  • VAE Decoder: Reconstructs images from latent representations.
  • GAN Discriminator: Ensures generated images are indistinguishable from real ones.

Installation

In order to run the program, you will need to install Python3.13 and pip. Then install the required dependencies by typing:

pip install -r requirements.txt

Showcase

Autoencoding (encoding -> latent space -> decoding)

output1 autoencoding2 autoencoding3

Interpolation

interpolation1 interpolation2 interpolation3 interpolation4 interpolation5 interpolation6 interpolation7 interpolation8 interpolation9

A chart of a projection of encoded sampled instances from the learning dataset in the latent space.

chart1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •