Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 33 additions & 4 deletions mil/bag_representation/mapping.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,7 +149,7 @@ class DiscriminativeMapping(MILESBase):
Multi-instance Learning with Discriminative Bag Mapping (Wu et al.)
http://www.cse.fau.edu/~xqzhu/papers/TKDE.Wu.2017.Multiinstance.pdf
"""
def __init__(self, m=2, sigma2=8e5):
def __init__(self, m=2, sigma2=8e5, distance_metric="MILES"):
"""
Parameters
----------
Expand All @@ -158,6 +158,7 @@ def __init__(self, m=2, sigma2=8e5):
"""
super(DiscriminativeMapping, self).__init__(sigma2)
self.m = m
self.distance_metric = distance_metric

def fit(self, X, y):
"""
Expand Down Expand Up @@ -186,8 +187,9 @@ def calculate_iip(self, X, y):
# calculate Q
Y = np.array([i * j for i in label for j in label]).reshape(len(label), len(label))
B, A = np.unique(Y, return_counts=True)[1]
Q = np.where(Y==-1, -1/A, 1/B)


Q = np.where(Y == 1, -1 / A, 1 / B)

# calculate J
J = np.sum(ins_bag @ Q, axis=1)

Expand All @@ -197,4 +199,31 @@ def calculate_iip(self, X, y):
# select dip
self.iip_ = np.array(bags2instances(X))[self.items_]


def transform(self, X):
"""
Gets the minimum distance between each bag-point pair.

"""
if self.distance_metric == "MILES":
return super(DiscriminativeMapping, self).transform(X)
elif self.distance_metric == "HAUSDORF":
dists = np.zeros((len(X), len(self.iip_)))
for i, bag in enumerate(X):
for j, p in enumerate(self.iip_):
# calculate minimum distance between bag and point
dists[i][j] = min([calc_distance(bag_pnt, p) for bag_pnt in bag])
return dists
else:
return None


def calc_distance(A, B):
"""
Calculates euclidean distance between 2 n-dimensional points
"""
dist = 0
for i in range(len(A)):
dist += (A[i] - B[i])**2
dist = dist**0.5
return dist