About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Bernoulli distribution constructor.
npm install @stdlib/stats-base-dists-bernoulli-ctorAlternatively,
- To load the package in a website via a
scripttag without installation and bundlers, use the ES Module available on theesmbranch (see README). - If you are using Deno, visit the
denobranch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umdbranch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var Bernoulli = require( '@stdlib/stats-base-dists-bernoulli-ctor' );Returns a Bernoulli distribution object.
var bernoulli = new Bernoulli();
var mean = bernoulli.mean;
// returns 0.5By default, p = 0.5. To create a distribution having a different success probability p, provide a parameter value.
var bernoulli = new Bernoulli( 0.2 );
var mean = bernoulli.mean;
// returns 0.2A Bernoulli distribution object has the following properties and methods...
Success probability of the distribution. p must be a probability.
var bernoulli = new Bernoulli( 0.2 );
var p = bernoulli.p;
// returns 0.2
bernoulli.p = 0.3;
p = bernoulli.p;
// returns 0.3Returns the differential entropy.
var bernoulli = new Bernoulli( 0.4 );
var entropy = bernoulli.entropy;
// returns ~0.673Returns the excess kurtosis.
var bernoulli = new Bernoulli( 0.4 );
var kurtosis = bernoulli.kurtosis;
// returns ~-1.833Returns the median.
var bernoulli = new Bernoulli( 0.4 );
var mu = bernoulli.mean;
// returns 0.4Returns the median.
var bernoulli = new Bernoulli( 0.4 );
var median = bernoulli.median;
// returns 0.0Returns the mode.
var bernoulli = new Bernoulli( 0.4 );
var mode = bernoulli.mode;
// returns 0.0Returns the skewness.
var bernoulli = new Bernoulli( 0.4 );
var skewness = bernoulli.skewness;
// returns ~0.408Returns the standard deviation.
var bernoulli = new Bernoulli( 0.4 );
var s = bernoulli.stdev;
// returns ~0.49Returns the variance.
var bernoulli = new Bernoulli( 0.4 );
var s2 = bernoulli.variance;
// returns 0.24Evaluates the cumulative distribution function (CDF).
var bernoulli = new Bernoulli( 0.2 );
var y = bernoulli.cdf( 0.5 );
// returns 0.8Evaluates the moment-generating function (MGF).
var bernoulli = new Bernoulli( 0.2 );
var y = bernoulli.mgf( -3.0 );
// returns ~0.81Evaluates the probability mass function (PMF).
var bernoulli = new Bernoulli( 0.2 );
var y = bernoulli.pmf( 0.0 );
// returns 0.8
y = bernoulli.pmf( 1.0 );
// returns 0.2Evaluates the quantile function at probability p.
var bernoulli = new Bernoulli( 0.2 );
var y = bernoulli.quantile( 0.5 );
// returns 0
y = bernoulli.quantile( 0.9 );
// returns 1var Bernoulli = require( '@stdlib/stats-base-dists-bernoulli-ctor' );
var bernoulli = new Bernoulli( 0.5 );
var mu = bernoulli.mean;
// returns 0.5
var s2 = bernoulli.variance;
// returns 0.25
var y = bernoulli.cdf( 2.0 );
// returns 1.0This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.