Skip to content
View tk-yasuno's full-sized avatar

Highlights

  • Pro

Block or report tk-yasuno

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse

Popular repositories Loading

  1. sam3-damage-detect sam3-damage-detect Public

    AI-powered concrete damage detection using SAM with privacy protection. Automatic rust detection, pattern recognition, and signboard blur masking.

    Python 3

  2. dql-bridge-maintenance dql-bridge-maintenance Public

    A deep reinforcement learning system for optimizing bridge maintenance decisions across municipal infrastructure fleets, implementing cross-subsidy budget sharing and cooperative multi-agent learning.

    Python 2

  3. markov-dqn-v09-quantile markov-dqn-v09-quantile Public

    Quantile Regression DQN implementation for bridge fleet maintenance optimization using Markov Decision Process. Migrated from C51 distributional RL (v0.8) with 200 quantiles and Huber loss. Feature…

    Python 2

  4. deepseek-v3-quantization-analysis deepseek-v3-quantization-analysis Public

    Comprehensive performance analysis of DeepSeek V3 quantization levels (FP16, Q8_0, Q4_0) on 16GB GPU environments.

    Python 1

  5. selective-rag-kasensabo selective-rag-kasensabo Public

    建設の技術基準に関する質問の専門性粒度(細かい/粗い)を96%正確に自動判定し、最適なRAGシステム(ColBERT/Naive)を選択する実用的なAgentic RAGシステムのMVPです。2025年11月に公開された河川砂防ダムの技術基準を対象に4つのRAGシステムを構築し、専門性の粒度が異なる200問の質問に対して、精度と速度を比較した。

    Python 1

  6. dql-maintenance-faster dql-maintenance-faster Public

    Deep Q-Network (DQN) implementation for optimal maintenance planning of 100-bridge fleet infrastructure using advanced reinforcement learning techniques and vectorized parallel training.

    Python 1