Tip
For symbolic dynamics, check out safe-control-gym
For ROS2, PX4, and ArduPilot support, check out aerial-autonomy-stack
This is a minimalist refactoring of the original gym-pybullet-drones repository, designed for compatibility with gymnasium, stable-baselines3 2.0, and betaflight/crazyflie-firmware SITL.
NOTE: if you want to access the original codebase, presented at IROS in 2021, please
git checkout [paper|master]
Tested on Intel x64/Ubuntu 22.04 and Apple Silicon/macOS 14.1.
git clone https://github.com/utiasDSL/gym-pybullet-drones.git
cd gym-pybullet-drones/
conda create -n drones python=3.10
conda activate drones
pip3 install --upgrade pip
pip3 install -e . # if needed, `sudo apt install build-essential` to install `gcc` and build `pybullet`
# check installed packages with `conda list`, deactivate with `conda deactivate`, remove with `conda remove -n drones --all`cd gym_pybullet_drones/examples/
python3 pid.py # position and velocity reference
python3 pid_velocity.py # desired velocity referencecd gym_pybullet_drones/examples/
python3 downwash.pycd gym_pybullet_drones/examples/
python learn.py # task: single drone hover at z == 1.0
python learn.py --multiagent true # task: 2-drone hover at z == 1.2 and 0.7
LATEST_MODEL=$(ls -t results | head -n 1) && python play.py --model_path "results/${LATEST_MODEL}/best_model.zip" # play and visualize the most recent learned policy after training# from the repo's top folder
cd gym-pybullet-drones/
pytest tests/Install pycffirmware for Ubuntu, macOS, or Windows
cd gym_pybullet_drones/examples/
python3 cff-dsl.pygit clone https://github.com/betaflight/betaflight
cd betaflight/
git checkout cafe727 # `master` branch head at the time of writing (future release 4.5)
make arm_sdk_install # if needed, `apt install curl``
make TARGET=SITL # comment out line: https://github.com/betaflight/betaflight/blob/master/src/main/main.c#L52
cp ~/gym-pybullet-drones/gym_pybullet_drones/assets/eeprom.bin ~/betaflight/ # assuming both gym-pybullet-drones/ and betaflight/ were cloned in ~/
betaflight/obj/main/betaflight_SITL.elfIn another terminal, run the example
conda activate drones
cd gym_pybullet_drones/examples/
python3 beta.py --num_drones 1 # check the steps in the file's docstrings to use multiple dronesIf you wish, please cite our IROS 2021 paper (and original codebase) as
@INPROCEEDINGS{panerati2021learning,
title={Learning to Fly---a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control},
author={Jacopo Panerati and Hehui Zheng and SiQi Zhou and James Xu and Amanda Prorok and Angela P. Schoellig},
booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2021},
volume={},
number={},
pages={7512-7519},
doi={10.1109/IROS51168.2021.9635857}
}- Erwin Coumans and Yunfei Bai (2023) PyBullet Quickstart Guide
- Carlos Luis and Jeroome Le Ny (2016) Design of a Trajectory Tracking Controller for a Nanoquadcopter
- Nathan Michael, Daniel Mellinger, Quentin Lindsey, Vijay Kumar (2010) The GRASP Multiple Micro-UAV Testbed
- Benoit Landry (2014) Planning and Control for Quadrotor Flight through Cluttered Environments
- Julian Forster (2015) System Identification of the Crazyflie 2.0 Nano Quadrocopter
- Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann (2019) Stable Baselines3
- Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung (2019) Neural Lander: Stable Drone Landing Control Using Learned Dynamics
- C. Karen Liu and Dan Negrut (2020) The Role of Physics-Based Simulators in Robotics
- Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scaramuzza (2020) Flightmare: A Flexible Quadrotor Simulator
University of Toronto's Dynamic Systems Lab / Vector Institute / University of Cambridge's Prorok Lab



