Skip to content

vortezwohl/DeepLoTX

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ask DeepWiki

Deep Long Text Learning

An out-of-the-box long-text NLP framework.

Author: vortezwohl

Citation

If you are incorporating the DeepLoTX framework into your research, please remember to properly cite it to acknowledge its contribution to your work.

Если вы интегрируете фреймворк DeepLoTX в своё исследование, пожалуйста, не забудьте правильно сослаться на него, указывая его вклад в вашу работу.

もしあなたが研究に DeepLoTX フレームワークを組み入れているなら、その貢献を認めるために適切に引用することを忘れないでください.

如果您正在將 DeepLoTX 框架整合到您的研究中,請務必正確引用它,以聲明它對您工作的貢獻.

@software{Wu_DeepLoTX_2025,
author = {Wu, Zihao},
license = {GPL-3.0},
month = aug,
title = {{DeepLoTX}},
url = {https://github.com/vortezwohl/DeepLoTX},
version = {0.9.5},
year = {2025}
}

Installation

  • With pip

    pip install -U deeplotx
    
  • With uv (recommended)

    uv add -U deeplotx
    
  • Get the latest features from GitHub

    pip install -U git+https://github.com/vortezwohl/DeepLoTX.git
    

Quick start

  • Named entity recognition

    Multilingual is supported.

    Gender recognition is supported.

    Import dependencies

    from deeplotx import BertNER
    
    ner = BertNER()
    ner('你好, 我的名字是吴子豪, 来自福建福州.')

    stdout:

    [NamedPerson(text='吴子豪', type='PER', base_probability=0.9995428418719051, gender=<Gender.Male: 'male'>, gender_probability=0.9970703125),
    NamedEntity(text='福建', type='LOC', base_probability=0.9986373782157898),
    NamedEntity(text='福州', type='LOC', base_probability=0.9993632435798645)]
    
    ner("Hi, i'm Vortez Wohl, author of DeeploTX.")

    stdout:

    [NamedPerson(text='Vortez Wohl', type='PER', base_probability=0.9991965342072855, gender=<Gender.Male: 'male'>, gender_probability=0.87255859375)]
    
  • Gender recognition

    Multilingual is supported.

    Integrated from Name2Gender

    Import dependencies

    from deeplotx import Name2Gender
    
    n2g = Name2Gender()

    Recognize gender of "Elon Musk":

    n2g('Elon Musk')

    stdout:

    <Gender.Male: 'male'>
    

    Recognize gender of "Anne Hathaway":

    n2g('Anne Hathaway')

    stdout:

    <Gender.Female: 'female'>
    

    Recognize gender of "吴彦祖":

    n2g('吴彦祖', return_probability=True)

    stdout:

    (<Gender.Male: 'male'>, 1.0)
    
  • Apply LoRA to a model

    Import dependencies

    from deeplotx import LoRA

    Assumed that the model has been loaded

    model = ...  # Maybe an LLM or some other deep neural network models
    lora_model = LoRA.apply_to(model, target_modules=['q_proj'], rank=16, alpha=32, dropout_rate=.05)
  • Long text embedding

    • BERT based long text embedding

      from deeplotx import LongTextEncoder
      
      encoder = LongTextEncoder(
          chunk_size=448,
          overlapping=32
      )
      encoder.encode('我是吴子豪, 这是一个测试文本.', flatten=False)

      stdout:

      tensor([ 2.2316e-01,  2.0300e-01,  ...,  1.5578e-01, -6.6735e-02])
      
    • Longformer based long text embedding

      from deeplotx import LongformerEncoder
      
      encoder = LongformerEncoder()
      encoder.encode('Thank you for using DeepLoTX.')

      stdout:

      tensor([-2.7490e-02,  6.6503e-02, ..., -6.5937e-02,  6.7802e-03])
      
  • Similarities calculation

    • Vector based

      import deeplotx.similarity as sim
      
      vector_0, vector_1 = [1, 2, 3, 4], [4, 3, 2, 1]
      distance_0 = sim.euclidean_similarity(vector_0, vector_1)
      print(distance_0)
      distance_1 = sim.cosine_similarity(vector_0, vector_1)
      print(distance_1)
      distance_2 = sim.chebyshev_similarity(vector_0, vector_1)
      print(distance_2)

      stdout:

      4.47213595499958
      0.33333333333333337
      3
      
    • Set based

      import deeplotx.similarity as sim
      
      set_0, set_1 = {1, 2, 3, 4}, {4, 5, 6, 7}
      distance_0 = sim.jaccard_similarity(set_0, set_1)
      print(distance_0)
      distance_1 = sim.ochiai_similarity(set_0, set_1)
      print(distance_1)
      distance_2 = sim.dice_coefficient(set_0, set_1)
      print(distance_2)
      distance_3 = sim.overlap_coefficient(set_0, set_1)
      print(distance_3)

      stdout:

      0.1428571428572653
      0.2500000000001875
      0.25000000000009376
      0.2500000000001875
      
    • Distribution based

      import deeplotx.similarity as sim
      
      dist_0, dist_1 = [0.3, 0.2, 0.1, 0.4], [0.2, 0.1, 0.3, 0.4]
      distance_0 = sim.cross_entropy(dist_0, dist_1)
      print(distance_0)
      distance_1 = sim.kl_divergence(dist_0, dist_1)
      print(distance_1)
      distance_2 = sim.js_divergence(dist_0, dist_1)
      print(distance_2)
      distance_3 = sim.hellinger_distance(dist_0, dist_1)
      print(distance_3)

      stdout:

      0.3575654913778237
      0.15040773967762736
      0.03969123741566945
      0.20105866986400994
      
  • Pre-defined neural networks

    from deeplotx import (
        FeedForward, 
        MultiHeadFeedForward, 
        LinearRegression, 
        LogisticRegression, 
        SoftmaxRegression, 
        RecursiveSequential, 
        LongContextRecursiveSequential, 
        RoPE, 
        LoRA, 
        Attention, 
        MultiHeadAttention, 
        RoFormerEncoder, 
        AutoRegression, 
        LongContextAutoRegression 
    )

    The fundamental FFN (MLPs):

    from typing_extensions import override
    
    import torch
    from torch import nn
    
    from deeplotx.nn.base_neural_network import BaseNeuralNetwork
    
    
    class FeedForwardUnit(BaseNeuralNetwork):
        def __init__(self, feature_dim: int, expansion_factor: int | float = 2,
                    bias: bool = True, dropout_rate: float = 0.05, model_name: str | None = None,
                    device: str | None = None, dtype: torch.dtype | None = None):
            super().__init__(in_features=feature_dim, out_features=feature_dim, model_name=model_name, device=device, dtype=dtype)
            self._dropout_rate = dropout_rate
            self.up_proj = nn.Linear(in_features=feature_dim, out_features=int(feature_dim * expansion_factor),
                                    bias=bias, device=self.device, dtype=self.dtype)
            self.down_proj = nn.Linear(in_features=int(feature_dim * expansion_factor), out_features=feature_dim,
                                    bias=bias, device=self.device, dtype=self.dtype)
            self.parametric_relu = nn.PReLU(num_parameters=1, init=5e-3,
                                            device=self.device, dtype=self.dtype)
            self.layer_norm = nn.LayerNorm(normalized_shape=self.up_proj.in_features, eps=1e-9,
                                        device=self.device, dtype=self.dtype)
    
        @override
        def forward(self, x: torch.Tensor) -> torch.Tensor:
            x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
            residual = x
            x = self.layer_norm(x)
            x = self.up_proj(x)
            x = self.parametric_relu(x)
            if self._dropout_rate > .0:
                x = torch.dropout(x, p=self._dropout_rate, train=self.training)
            return self.down_proj(x) + residual
    
    
    class FeedForward(BaseNeuralNetwork):
        def __init__(self, feature_dim: int, num_layers: int = 1, expansion_factor: int | float = 2,
                    bias: bool = True, dropout_rate: float = 0.05, model_name: str | None = None,
                    device: str | None = None, dtype: torch.dtype | None = None):
            if num_layers < 1:
                raise ValueError('num_layers cannot be less than 1.')
            super().__init__(in_features=feature_dim, out_features=feature_dim, model_name=model_name, device=device, dtype=dtype)
            self.ffn_layers = nn.ModuleList([FeedForwardUnit(feature_dim=feature_dim,
                                                            expansion_factor=expansion_factor, bias=bias,
                                                            dropout_rate=dropout_rate,
                                                            device=self.device, dtype=self.dtype) for _ in range(num_layers)])
    
        @override
        def forward(self, x: torch.Tensor) -> torch.Tensor:
            x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
            for ffn in self.ffn_layers:
                x = ffn(x)
            return x

    Attention:

    from typing_extensions import override
    
    import torch
    
    from deeplotx.nn.base_neural_network import BaseNeuralNetwork
    from deeplotx.nn.feed_forward import FeedForward
    from deeplotx.nn.rope import RoPE, DEFAULT_THETA
    
    
    class Attention(BaseNeuralNetwork):
        def __init__(self, feature_dim: int, bias: bool = True, positional: bool = True,
                    proj_layers: int = 1, proj_expansion_factor: int | float = 1.5, dropout_rate: float = 0.02,
                    model_name: str | None = None, device: str | None = None, dtype: torch.dtype | None = None,
                    **kwargs):
            super().__init__(in_features=feature_dim, out_features=feature_dim, model_name=model_name,
                            device=device, dtype=dtype)
            self._positional = positional
            self._feature_dim = feature_dim
            self.q_proj = FeedForward(feature_dim=self._feature_dim, num_layers=proj_layers,
                                    expansion_factor=proj_expansion_factor,
                                    bias=bias, dropout_rate=dropout_rate, device=self.device, dtype=self.dtype)
            self.k_proj = FeedForward(feature_dim=self._feature_dim, num_layers=proj_layers,
                                    expansion_factor=proj_expansion_factor,
                                    bias=bias, dropout_rate=dropout_rate, device=self.device, dtype=self.dtype)
            self.v_proj = FeedForward(feature_dim=self._feature_dim, num_layers=proj_layers,
                                    expansion_factor=proj_expansion_factor,
                                    bias=bias, dropout_rate=dropout_rate, device=self.device, dtype=self.dtype)
            if self._positional:
                self.rope = RoPE(feature_dim=self._feature_dim, theta=kwargs.get('theta', DEFAULT_THETA),
                                device=self.device, dtype=self.dtype)
    
        def _attention(self, x: torch.Tensor, y: torch.Tensor, mask: torch.Tensor | None = None) -> torch.Tensor:
            q, k = self.q_proj(x), self.k_proj(y)
            if self._positional:
                q, k = self.rope(q), self.rope(k)
            attn = torch.matmul(q, k.transpose(-2, -1))
            attn = attn / (self._feature_dim ** 0.5)
            attn = attn.masked_fill(mask == 0, -1e9) if mask is not None else attn
            return torch.softmax(attn, dtype=self.dtype, dim=-1)
    
        @override
        def forward(self, x: torch.Tensor, y: torch.Tensor | None = None, mask: torch.Tensor | None = None) -> torch.Tensor:
            x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
            y = x if y is None else self.ensure_device_and_dtype(y, device=self.device, dtype=self.dtype)
            if mask is not None:
                mask = self.ensure_device_and_dtype(mask, device=self.device, dtype=self.dtype)
            v = self.v_proj(y)
            return torch.matmul(self._attention(x, y, mask), v)