Enterprise-Grade AI SDK for Go - Zero-Cost Guardrails, Native Concurrency, Production-First
A production-ready, type-safe AI SDK for Go with advanced features like multi-tier memory, RAG, workflow orchestration, cost management, and enterprise guardrails. Built for high-throughput microservices with zero external dependencies.
⚠️ Status: Alpha - API may change. Test coverage 81%+. Suitable for evaluation and non-critical production use.
| Feature | Description | Status |
|---|---|---|
| Fluent API | Type-safe builders with method chaining | ✅ |
| Structured Output | Go generics + JSON schema validation | ✅ |
| Enhanced Streaming | Token-by-token with reasoning steps | ✅ |
| RAG Support | Full pipeline with semantic search & reranking | ✅ |
| Multi-Tier Memory | Working → Short → Long → Episodic | ✅ |
| Tool System | Auto-discovery from Go functions | ✅ |
| Workflow Engine | DAG-based orchestration | ✅ |
| Prompt Templates | Versioning + A/B testing | ✅ |
| Safety Guardrails | PII, injection, toxicity detection | ✅ |
| Cost Management | Budget tracking + optimization | ✅ |
| Resilience | Circuit breakers, retries, rate limiting | ✅ |
| Observability | Tracing, profiling, debugging | ✅ |
go get github.com/xraph/ai-sdkpackage main
import (
"context"
"fmt"
"github.com/xraph/ai-sdk"
)
func main() {
// Create LLM manager
llmManager := sdk.NewLLMManager(logger, metrics)
// Generate text
result, err := sdk.NewGenerateBuilder(context.Background(), llmManager, logger, metrics).
WithProvider("openai").
WithModel("gpt-4").
WithPrompt("Explain quantum computing in simple terms").
WithMaxTokens(500).
WithTemperature(0.7).
Execute()
if err != nil {
panic(err)
}
fmt.Println(result.Content)
}type Person struct {
Name string `json:"name" description:"Full name"`
Age int `json:"age" description:"Age in years"`
Hobbies []string `json:"hobbies" description:"List of hobbies"`
}
person, err := sdk.NewGenerateObjectBuilder[Person](ctx, llmManager, logger, metrics).
WithProvider("openai").
WithModel("gpt-4").
WithPrompt("Extract person info: John Doe, 30, loves reading and hiking").
WithValidator(func(p *Person) error {
if p.Age < 0 || p.Age > 150 {
return fmt.Errorf("invalid age: %d", p.Age)
}
return nil
}).
Execute()
fmt.Printf("%+v\n", person)
// Output: &{Name:John Doe Age:30 Hobbies:[reading hiking]}stream := sdk.NewStreamBuilder(ctx, llmManager, logger, metrics).
WithProvider("anthropic").
WithModel("claude-3-opus").
WithPrompt("Solve: What is 15% of 240?").
WithReasoning(true).
OnToken(func(token string) {
fmt.Print(token)
}).
OnReasoning(func(step string) {
fmt.Printf("[Thinking: %s]\n", step)
}).
OnComplete(func(result *sdk.Result) {
fmt.Printf("\n✅ Complete! Cost: $%.4f\n", result.Usage.Cost)
})
result, err := stream.Stream()Output:
[Thinking: Need to calculate 15% of 240]
[Thinking: 15% = 0.15, so 0.15 * 240]
The answer is 36.
✅ Complete! Cost: $0.0120
// Setup RAG
embeddingModel := &MyEmbeddingModel{}
vectorStore := &MyVectorStore{}
rag := sdk.NewRAG(embeddingModel, vectorStore, logger, metrics, &sdk.RAGOptions{
ChunkSize: 500,
ChunkOverlap: 50,
TopK: 5,
})
// Index documents
rag.IndexDocument(ctx, "doc1", "Quantum computers use qubits that can be 0 and 1 simultaneously...")
rag.IndexDocument(ctx, "doc2", "Machine learning models require training data...")
// Retrieve and generate
generator := sdk.NewGenerateBuilder(ctx, llmManager, logger, metrics).
WithProvider("openai").
WithModel("gpt-4")
result, err := rag.GenerateWithContext(ctx, generator, "How do quantum computers work?", 5)// Create agent
agent, err := sdk.NewAgent("assistant", "AI Assistant", llmManager, stateStore, logger, metrics, &sdk.AgentOptions{
SystemPrompt: "You are a helpful assistant with memory of past conversations.",
MaxIterations: 10,
Temperature: 0.7,
})
// First conversation
result1, err := agent.Execute(ctx, "My name is Alice and I love hiking.")
// Agent: "Nice to meet you, Alice! Hiking is a wonderful activity..."
// Second conversation (agent remembers)
result2, err := agent.Execute(ctx, "What do you know about me?")
// Agent: "You're Alice, and you mentioned you love hiking!"
// Save state
agent.SaveState(ctx)// Create ReAct agent with iterative reasoning
reactAgent, err := sdk.NewReactAgentBuilder("research_assistant").
WithModel("gpt-4").
WithProvider("openai").
WithSystemPrompt("You are a research assistant that thinks step-by-step.").
WithTools(searchTool, calculatorTool, summarizerTool).
WithLLMManager(llmManager).
WithMemoryManager(memoryManager).
WithMaxIterations(10).
WithReflectionInterval(3). // Self-reflect every 3 steps
WithConfidenceThreshold(0.7). // Minimum confidence level
WithLogger(logger).
WithMetrics(metrics).
Build()
// Execute with ReAct loop: Thought → Action → Observation → Reflection
execution, err := reactAgent.Execute(ctx, "What are the latest breakthroughs in quantum computing and their potential applications?")
// Get reasoning traces
traces := reactAgent.GetTraces()
for _, trace := range traces {
fmt.Printf("Step %d:\n", trace.Step)
fmt.Printf(" Thought: %s\n", trace.Thought)
fmt.Printf(" Action: %s\n", trace.Action)
fmt.Printf(" Observation: %s\n", trace.Observation)
fmt.Printf(" Confidence: %.2f\n", trace.Confidence)
}
// Get self-reflections
reflections := reactAgent.GetReflections()
for _, reflection := range reflections {
fmt.Printf("Quality: %s, Score: %.2f\n", reflection.Quality, reflection.Score)
fmt.Printf("Issues: %v\n", reflection.Issues)
fmt.Printf("Suggestions: %v\n", reflection.Suggestions)
}// Create Plan-Execute agent for complex multi-step tasks
planAgent, err := sdk.NewPlanExecuteAgentBuilder("project_manager").
WithModel("gpt-4").
WithProvider("openai").
WithSystemPrompt("You are an expert at breaking down complex tasks into plans.").
WithTools(fileTool, apiTool, dbTool, searchTool).
WithLLMManager(llmManager).
WithPlanStore(planStore).
WithMemoryManager(memoryManager).
WithAllowReplanning(true). // Enable automatic replanning on failures
WithVerifySteps(true). // Verify each step's output
WithMaxReplanAttempts(3). // Max replanning attempts
WithTimeout(10 * time.Minute). // Execution timeout
WithLogger(logger).
WithMetrics(metrics).
Build()
// Execute: Plan → Execute → Verify
execution, err := planAgent.Execute(ctx, "Build a user authentication system with email verification and password reset")
// Get the generated plan
plan := planAgent.GetCurrentPlan()
fmt.Printf("Plan: %s (Status: %s)\n", plan.Goal, plan.Status)
for i, step := range plan.Steps {
fmt.Printf(" Step %d: %s\n", i+1, step.Description)
fmt.Printf(" Status: %s, Result: %v\n", step.Status, step.Result)
if step.Verification != nil {
fmt.Printf(" Verified: %v (Score: %.2f)\n", step.Verification.IsValid, step.Verification.Score)
}
}
// Get plan history (including replans)
history := planAgent.GetPlanHistory()
fmt.Printf("Total plans created: %d (including %d replans)\n", len(history), len(history)-1)// Create memory manager
memoryManager := sdk.NewMemoryManager("agent_1", embeddingModel, vectorStore, logger, metrics, &sdk.MemoryManagerOptions{
WorkingCapacity: 10,
ShortTermTTL: 24 * time.Hour,
ImportanceDecay: 0.1,
})
// Store memories
memoryManager.Store(ctx, "User prefers morning meetings", 0.8, nil) // High importance
memoryManager.Store(ctx, "Weather is sunny today", 0.3, nil) // Low importance
// Recall memories
memories, err := memoryManager.Recall(ctx, "meetings", sdk.MemoryTierAll, 5)
// Promote important memory
memoryManager.Promote(ctx, memories[0].ID)
// Create episodic memory
episode := &sdk.EpisodicMemory{
Title: "Project Launch Meeting",
Description: "Discussed Q1 goals and assigned tasks",
Memories: []string{"mem_id_1", "mem_id_2"},
Tags: []string{"project", "meeting"},
Importance: 0.9,
}
memoryManager.CreateEpisode(ctx, episode)// Create tool registry
registry := sdk.NewToolRegistry(logger, metrics)
// Register from Go function
registry.RegisterFunc("calculate", "Performs arithmetic", func(ctx context.Context, a, b float64, op string) (float64, error) {
switch op {
case "add":
return a + b, nil
case "multiply":
return a * b, nil
default:
return 0, fmt.Errorf("unsupported operation: %s", op)
}
})
// Register with full definition
registry.RegisterTool(&sdk.ToolDefinition{
Name: "web_search",
Version: "1.0.0",
Description: "Searches the web",
Parameters: sdk.ToolParameterSchema{
Type: "object",
Properties: map[string]sdk.ToolParameterProperty{
"query": {Type: "string", Description: "Search query"},
},
Required: []string{"query"},
},
Handler: func(ctx context.Context, params map[string]interface{}) (interface{}, error) {
query := params["query"].(string)
return performWebSearch(query), nil
},
Timeout: 10 * time.Second,
})
// Execute tool
result, err := registry.ExecuteTool(ctx, "calculate", "1.0.0", map[string]interface{}{
"param0": 10.0,
"param1": 5.0,
"param2": "add",
})
// result.Result: 15.0// Create workflow
workflow := sdk.NewWorkflow("onboarding", "User Onboarding", logger, metrics)
// Add nodes
workflow.AddNode(&sdk.WorkflowNode{
ID: "validate",
Type: sdk.NodeTypeTool,
ToolName: "validate_email",
})
workflow.AddNode(&sdk.WorkflowNode{
ID: "send_welcome",
Type: sdk.NodeTypeAgent,
AgentID: "email_agent",
})
workflow.AddNode(&sdk.WorkflowNode{
ID: "check_activation",
Type: sdk.NodeTypeCondition,
Condition: "user.activated == true",
})
// Define dependencies
workflow.AddEdge("validate", "send_welcome")
workflow.AddEdge("send_welcome", "check_activation")
workflow.SetStartNode("validate")
// Execute
execution, err := workflow.Execute(ctx, map[string]interface{}{
"email": "[email protected]",
})
fmt.Printf("Workflow completed: %s\n", execution.Status)// Create template manager
templateMgr := sdk.NewPromptTemplateManager(logger, metrics)
// Register template
templateMgr.RegisterTemplate(&sdk.PromptTemplate{
Name: "greeting",
Version: "1.0.0",
Template: "Hello, {{.Name}}! Welcome to {{.Service}}.",
})
// Render
text, err := templateMgr.Render("greeting", "1.0.0", map[string]interface{}{
"Name": "Alice",
"Service": "AI Platform",
})
// Output: "Hello, Alice! Welcome to AI Platform."
// Create A/B test
templateMgr.RegisterTemplate(&sdk.PromptTemplate{
Name: "greeting",
Version: "2.0.0",
Template: "Hi {{.Name}}! 👋 Excited to have you on {{.Service}}!",
})
templateMgr.CreateABTest(&sdk.ABTest{
Name: "greeting",
Variants: []sdk.ABVariant{
{Name: "control", TemplateVersion: "1.0.0", TrafficWeight: 0.5},
{Name: "friendly", TemplateVersion: "2.0.0", TrafficWeight: 0.5},
},
})
// Render will automatically select variant
text, _ = templateMgr.Render("greeting", "", vars)
// Track results
templateMgr.RecordABTestResult("greeting", "friendly", true, 120*time.Millisecond, 0.001)// Create guardrail manager
guardrails := sdk.NewGuardrailManager(logger, metrics, &sdk.GuardrailOptions{
EnablePII: true,
EnableToxicity: true,
EnablePromptInjection: true,
EnableContentFilter: true,
MaxInputLength: 10000,
})
// Validate input
violations, err := guardrails.ValidateInput(ctx, userInput)
if sdk.ShouldBlock(violations) {
return fmt.Errorf("input blocked: %s", sdk.FormatViolations(violations))
}
// Validate output
violations, err = guardrails.ValidateOutput(ctx, aiOutput)
// Redact PII
clean := guardrails.RedactPII("My email is [email protected]")
// Output: "My email is [REDACTED]"Why Native Guardrails?
- ✅ Zero cost: No external API calls or subscriptions required
- ✅ Sub-millisecond latency: Regex-based detection vs 50-200ms API calls
- ✅ Privacy: Data never leaves your infrastructure
- ✅ Offline-capable: Works in air-gapped environments
- ✅ Predictable: Deterministic behavior, no ML black boxes
Comparison with Vercel AI SDK (v5):
- Vercel approach: Middleware + external services (Portkey: 250+ LLMs, 50+ guardrails, $99-$499/mo)
- Pros: ML-based detection, multi-language support, continuously updated
- Cons: API latency (50-200ms), external dependency, monthly costs
- Forge approach: Native built-in (regex/pattern-based, free)
- Pros: <1ms latency, no external calls, works offline, zero cost, privacy
- Cons: Limited to patterns (not ML), primarily English, manual updates
Best fit: Use Forge for cost-sensitive, high-throughput, or air-gapped deployments. Use Vercel + Portkey for advanced ML-based detection and compliance requirements.
// Create cost tracker
costTracker := sdk.NewCostTracker(logger, metrics, &sdk.CostTrackerOptions{
RetentionPeriod: 30 * 24 * time.Hour,
})
// Set budget
costTracker.SetBudget("monthly", 1000.0, 30*24*time.Hour, 0.8) // Alert at 80%
// Record usage (automatic via SDK)
costTracker.RecordUsage(ctx, sdk.UsageRecord{
Provider: "openai",
Model: "gpt-4",
InputTokens: 1000,
OutputTokens: 500,
})
// Get insights
insights := costTracker.GetInsights()
fmt.Printf("Cost today: $%.2f\n", insights.CostToday)
fmt.Printf("Projected monthly: $%.2f\n", insights.ProjectedMonthly)
fmt.Printf("Cache hit rate: %.1f%%\n", insights.CacheHitRate*100)
// Get recommendations
recommendations := costTracker.GetOptimizationRecommendations()
for _, rec := range recommendations {
fmt.Printf("💡 %s: %s (Save $%.2f)\n", rec.Title, rec.Description, rec.PotentialSavings)
}// Circuit Breaker
cb := sdk.NewCircuitBreaker(sdk.CircuitBreakerConfig{
Name: "llm_api",
MaxFailures: 5,
ResetTimeout: 60 * time.Second,
}, logger, metrics)
err := cb.Execute(ctx, func(ctx context.Context) error {
return callLLM(ctx)
})
// Retry with Exponential Backoff
err = sdk.Retry(ctx, sdk.RetryConfig{
MaxAttempts: 3,
InitialDelay: 100 * time.Millisecond,
MaxDelay: 5 * time.Second,
Multiplier: 2.0,
Jitter: true,
}, logger, func(ctx context.Context) error {
return unreliableOperation(ctx)
})
// Rate Limiter
limiter := sdk.NewRateLimiter("api_calls", 10, 20, logger, metrics) // 10/sec, burst 20
if limiter.Allow() {
callAPI()
}
// Or wait for token
limiter.Wait(ctx)
// Fallback Chain
fallback := sdk.NewFallbackChain("generation", logger, metrics)
err = fallback.Execute(ctx,
func(ctx context.Context) error { return tryPrimaryModel(ctx) },
func(ctx context.Context) error { return trySecondaryModel(ctx) },
func(ctx context.Context) error { return useCachedResponse(ctx) },
)
// Bulkhead (concurrency limiting)
bulkhead := sdk.NewBulkhead("heavy_ops", 5, logger, metrics) // Max 5 concurrent
bulkhead.Execute(ctx, func(ctx context.Context) error {
return heavyOperation(ctx)
})// Distributed Tracing
tracer := sdk.NewTracer(logger, metrics)
span := tracer.StartSpan(ctx, "generate_response")
span.SetTag("model", "gpt-4")
span.SetTag("user_id", "user_123")
defer span.Finish()
// Add span to context
ctx = sdk.ContextWithSpan(ctx, span)
// Log events
span.LogEvent("info", "Processing request", map[string]interface{}{
"tokens": 1000,
})
// Performance Profiling
profiler := sdk.NewProfiler(logger, metrics)
session := profiler.StartProfile("llm_call")
// ... do work ...
session.End()
// Get profile
profile := profiler.GetProfile("llm_call")
fmt.Printf("Avg: %v, P95: %v, P99: %v\n", profile.AvgTime, profile.Percentiles[95], profile.Percentiles[99])
// Debugging
debugger := sdk.NewDebugger(logger)
debugInfo := debugger.GetDebugInfo()
fmt.Printf("Goroutines: %d\n", debugInfo.Goroutines)
fmt.Printf("Memory: %d MB\n", debugInfo.MemoryStats.Alloc/1024/1024)
// Health Checks
healthChecker := sdk.NewHealthChecker(logger)
healthChecker.RegisterCheck("llm_api", func(ctx context.Context) error {
return pingLLMAPI(ctx)
})
healthChecker.RegisterCheck("vector_store", func(ctx context.Context) error {
return pingVectorStore(ctx)
})
status := healthChecker.GetOverallHealth(ctx)
// Output: "healthy", "degraded", or "unhealthy"func buildProductionAgent() *sdk.Agent {
// Setup components
llmManager := setupLLMManager()
vectorStore := setupVectorStore()
embeddingModel := setupEmbeddingModel()
toolRegistry := setupTools()
// Create memory system
memory := sdk.NewMemoryManager("agent_id", embeddingModel, vectorStore, logger, metrics, &sdk.MemoryManagerOptions{
WorkingCapacity: 20,
ShortTermTTL: 24 * time.Hour,
})
// Setup RAG
rag := sdk.NewRAG(embeddingModel, vectorStore, logger, metrics, nil)
// Index knowledge base
rag.IndexDocument(ctx, "kb_1", knowledgeBase)
// Setup guardrails
guardrails := sdk.NewGuardrailManager(logger, metrics, &sdk.GuardrailOptions{
EnablePII: true,
EnableToxicity: true,
EnablePromptInjection: true,
})
// Create agent
agent, _ := sdk.NewAgent("prod_agent", "Production Agent", llmManager, stateStore, logger, metrics, &sdk.AgentOptions{
SystemPrompt: "You are a helpful AI assistant with access to tools and knowledge.",
Tools: toolRegistry.ListTools(),
Guardrails: guardrails,
MaxIterations: 10,
})
return agent
}Forge AI SDK includes a comprehensive integrations module with production-ready implementations for popular services. All integrations use official Go SDKs where available and include complete test coverage.
| Integration | Status | SDK | Description |
|---|---|---|---|
| Memory | ✅ | Built-in | In-memory store for testing and local development |
| pgvector | ✅ | pgx/v5 |
PostgreSQL with vector similarity search |
| Qdrant | ✅ | Official | High-performance vector database with gRPC |
| Pinecone | ✅ | Official | Managed vector database service |
| Weaviate | ✅ | Official | Vector database with GraphQL API |
| ChromaDB | ✅ | REST | Open-source embedding database |
| Integration | Status | SDK | Description |
|---|---|---|---|
| Memory (State) | ✅ | Built-in | In-memory state with optional TTL |
| Memory (Cache) | ✅ | Built-in | LRU cache with TTL support |
| PostgreSQL | ✅ | pgx/v5 |
JSONB-based state storage |
| Redis (State) | ✅ | go-redis/v9 |
Distributed state management |
| Redis (Cache) | ✅ | go-redis/v9 |
High-performance caching |
| Integration | Status | SDK | Description |
|---|---|---|---|
| OpenAI | ✅ | Official | text-embedding-3-small/large |
| Cohere | ✅ | Official | embed-english-v3.0, multilingual support |
| Ollama | ✅ | Built-in | Local embedding models |
import (
"github.com/xraph/ai-sdk/integrations/vectorstores/pgvector"
"github.com/xraph/ai-sdk/integrations/embeddings/openai"
"github.com/xraph/ai-sdk/integrations/statestores/redis"
)
// Vector store
vectorStore, _ := pgvector.NewPgVectorStore(ctx, pgvector.Config{
ConnString: "postgres://localhost/mydb",
TableName: "embeddings",
Dimensions: 1536,
})
// Embeddings
embedder, _ := openai.NewOpenAIEmbeddings(openai.Config{
APIKey: os.Getenv("OPENAI_API_KEY"),
Model: "text-embedding-3-small",
})
// State store
stateStore, _ := redis.NewRedisStateStore(redis.Config{
Addr: "localhost:6379",
Prefix: "agent:",
})
// Use with RAG
rag := sdk.NewRAG(sdk.RAGConfig{
VectorStore: vectorStore,
Embedder: embedder,
TopK: 5,
})All integrations include:
- ✅ Unit tests with mocks
- ✅ Integration tests with testcontainers-go
- ✅ Benchmarks for performance validation
- ✅ Complete documentation with examples
# Run integration tests (requires Docker)
cd integrations
go test -tags=integration ./tests/integration/...
# Run benchmarks
go test -bench=. -benchmem ./benchmarks/...- Integrations Overview
- Vector Stores Guide
- State & Cache Stores
- Embeddings Guide
- Integration Tests
- Benchmarks Guide
- Throughput: 1000+ requests/sec (with pooling)
- Latency: P99 < 200ms (streaming)
- Memory: < 50MB base, scales linearly
- Concurrency: Fully thread-safe
- Test Coverage: 81%+
- Integrations: 17 production-ready implementations
🤝 Comparison Still needs research to be thorough so except vercel take the others with a grain of salt
Last Updated: January 2026
Major Updates:
- Vercel AI SDK v5: Multi-modal streaming (audio/video), Agent class, unified tool calling
- Vercel AI SDK v4.2: Stable middleware support for guardrails/caching
- LangChain: 100+ vector store integrations, LangGraph production-ready
- Forge AI SDK: Native guardrails, 4-tier memory, cost optimization
| Feature | Vercel AI SDK (v5) | LangChain (Python) | LangChain.js | Forge AI SDK |
|---|---|---|---|---|
| Language | TypeScript/JS | Python | TypeScript/JS | Go |
| Type Safety | ✅ TypeScript | ✅ TypeScript | ✅✅ Generics + Runtime | |
| Structured Output | ✅✅ Zod + native schemas | ✅ Pydantic | ✅ Zod | ✅ Go structs + validation |
| Streaming | ✅✅ Multi-modal (SSE) | ✅ Text + tool calls | ✅ Text + Objects | ✅ Text + Objects + UI |
| Multi-Modal | ✅✅ Text, image, audio, video | |||
| Memory System | ✅ Conversation buffer | ✅✅ 4-Tier + Episodic | ||
| RAG Support | ✅✅ Full pipeline | ✅ Full pipeline | ✅✅ Chunking + Reranking | |
| Vector Stores | ✅ Integrations | ✅✅ 100+ integrations | ✅ 70+ integrations | ✅✅ 6 built-in + pluggable |
| Agents | ✅ Agent class (v5) | ✅✅ ReAct, Plan-Execute | ✅ ReAct agents | ✅✅ ReAct + Plan-Execute + Reflection |
| Workflow Engine | ✅✅ LangGraph (prod) | ✅ LangGraph.js | ✅ Native DAG engine | |
| Tool Calling | ✅✅ Unified 100+ models | ✅ Manual | ✅ Manual | ✅✅ Auto from Go funcs |
| Cost Tracking | ✅✅ Budget + Optimization | |||
| Guardrails | ✅ Middleware + Portkey | ✅✅ Native built-in (free) | ||
| Middleware | ✅✅ Stable (v4.2+) | |||
| A/B Testing | ❌ | ❌ | ❌ | ✅ Prompt variants |
| Resilience | ✅✅ Circuit breaker + more | |||
| Observability | ✅ OpenTelemetry | ✅✅ LangSmith (prod) | ✅ LangSmith | ✅ Native tracing + metrics |
| Caching | ✅✅ Prompt cache + Portkey | ✅ Via Redis/LangChain | ✅ Semantic + Provider | |
| Provider Support | ✅✅ 100+ via Gateway/40+ native | ✅✅ Many providers | ✅✅ 30+ providers | ✅ 5+ (extensible) |
| Framework Support | ✅✅ React, Vue, Svelte, Angular | ❌ Backend only | ✅ Node.js/Edge | ❌ Backend only |
| External Dependencies | ✅✅ Zero for core features | |||
| Production Ready | ✅✅ Battle-tested (v5 stable) | ✅✅ Mature ecosystem | ✅ Mature | |
| Performance | ✅✅ Native concurrency | |||
| Best For | Next.js, React apps | Python ML stack | JS/TS full-stack | Go microservices |
Forge AI SDK (Go) excels at:
- ✅ Zero-cost guardrails: Native PII/toxicity/injection detection with <1ms latency (no external API costs)
- ✅ Native concurrency: Goroutines for high-throughput production systems (1000+ req/sec)
- ✅ Type safety: Compile-time guarantees with Go generics + runtime validation
- ✅ Enterprise features: Built-in cost management, budgets, and resilience patterns (circuit breakers, bulkheads)
- ✅ Production integrations: 17 built-in integrations with official SDKs (pgvector, Qdrant, Pinecone, Weaviate, Redis, etc.)
- ✅ Single binary: Easy deployment, no runtime dependencies, works offline/air-gapped
- ✅ Production-first: Structured logging, distributed tracing, health checks built-in
- ✅ Comprehensive testing: Integration tests with testcontainers + performance benchmarks
Vercel AI SDK (v5) excels at:
- ✅ Multi-modal streaming: Native support for text, images, audio, video via unified API (SSE)
- ✅ Agent primitives (v5):
Agentclass withprepareStep,stopWhenfor dynamic workflows - ✅ Composable middleware (v4.2+): Stable pattern for guardrails, caching, logging across providers
- ✅ AI Gateway: Unified API to 100+ models with automatic fallback, usage tracking, billing
- ✅ Framework-agnostic: React, Vue, Svelte, Angular support with feature parity
- ✅ Unified tool calling: Standardized across 100+ models from 25+ providers
- ✅ OpenTelemetry: Native observability and distributed tracing
- ✅ Portkey integration: 50+ ML-based guardrails (requires $99-$499/mo)
- ✅ Production-ready: Battle-tested with Next.js ecosystem, v5 stable release
- ✅ UI Elements library: Pre-built React components for AI interfaces
LangChain excels at:
- ✅ Massive ecosystem: 100+ integrations with vector stores, tools, and services
- ✅ Mature patterns: ReAct agents, Plan-Execute, proven RAG architectures
- ✅ LangGraph: Industry-leading DAG-based workflow orchestration
- ✅ LangSmith: Production observability, prompt management, evaluation
- ✅ Research-backed: Strong community support and cutting-edge implementations
Forge AI SDK (Go) prioritizes self-contained, cost-effective operations with native implementations of core features. Zero external dependencies for core functionality. Best for: Go microservices, cost-conscious teams, air-gapped/enterprise environments, high-throughput systems (1000+ req/sec).
Vercel AI SDK (v5) prioritizes developer experience and multi-modal capabilities with framework-first design. Best for: Next.js/React applications, teams needing multi-modal AI (audio/video), rapid prototyping, unified access to 100+ models, frontend-focused development.
LangChain prioritizes flexibility and ecosystem maturity with 100+ integrations and production-grade tooling (LangGraph, LangSmith). Best for: Python ML teams, complex agent workflows, research and experimentation, teams heavily invested in Python ecosystem.
| Feature | Forge AI SDK | Vercel AI SDK | LangChain (Python) | Notes |
|---|---|---|---|---|
| SDK/License | $0 | $0 | $0 | All open-source |
| Guardrails | $0 (native) | $99-$499/mo (Portkey) | $0-$499/mo (via integrations) | Forge: Built-in, Vercel/LangChain: External |
| Observability | $0 (built-in) | $0 (OpenTelemetry) | $0-$299/mo (LangSmith) | LangSmith: $39-$299/mo for prod features |
| AI Gateway | N/A | $0 (usage tracking) | N/A | Vercel Gateway included, future billing TBD |
| Caching | $0 (native) | $0-$99/mo (Portkey) | Redis hosting costs | Forge: No external dependencies |
| Vector Store | External (user choice) | External (user choice) | External (user choice) | Pinecone: $0-$90/mo, Weaviate: self-host |
| 100K req/day | LLM costs only | LLM + $0-$599/mo | LLM + $0-$598/mo | Depends on optional services |
Cost Scenarios:
-
Minimal Setup (no guardrails/observability):
- Forge: $0 infrastructure cost
- Vercel: $0 infrastructure cost
- LangChain: $0-$40/mo (Redis for caching)
-
Production Setup (guardrails + observability + caching):
- Forge: $0 infrastructure cost (all built-in)
- Vercel: $99-$598/mo (Portkey $99-$499 + optional LangSmith)
- LangChain: $39-$598/mo (LangSmith + optional guardrails + Redis)
Annual Savings: Forge saves $1,188-$7,176/year vs Vercel/LangChain production setups.
| Your Priority | Recommended SDK | Reason |
|---|---|---|
| Cost optimization | Forge AI SDK | Zero infrastructure costs, no external dependencies |
| Go ecosystem | Forge AI SDK | Native Go, goroutines, single binary deployment |
| Multi-modal AI (audio/video) | Vercel AI SDK v5 | Best-in-class support for audio/video streaming |
| Frontend integration | Vercel AI SDK v5 | React/Vue/Svelte hooks, Server Components |
| Python ML stack | LangChain | Mature ecosystem, 100+ integrations, LangSmith |
| Complex workflows | LangChain | LangGraph production-ready, proven patterns |
| High throughput | Forge AI SDK | Native concurrency, 1000+ req/sec, low latency |
| Air-gapped/Enterprise | Forge AI SDK | Works offline, no external API dependencies |
| Rapid prototyping | Vercel AI SDK v5 | 100+ models via Gateway, excellent DX |
| Research/Experimentation | LangChain | Flexible, extensive documentation, community |
- UI Generation System - Rich, interactive UI components generated by AI
# Run all tests
go test ./...
# With coverage
go test -cover ./...
# Benchmark
go test -bench=. -benchmem ./...
# Race detection
go test -race ./...# Install dependencies
go mod download
# Run linters
golangci-lint run
# Format code
go fmt ./...
# Generate docs
godoc -http=:6060MIT License - see LICENSE for details.
If this project helped you, please ⭐ star it on GitHub!
Contributions welcome! See CONTRIBUTING.md.
- 📧 Email: [email protected]
- 💬 Discord: Join our community
- 📖 Docs: forge.xraph.com/docs
Built with ❤️ by the XRaph Team