A comprehensive sentiment analysis system for analyzing social media sentiment and its correlation with cryptocurrency token prices, specifically focused on meme tokens.
├── database/ # Database management scripts
├── models/ # ML models including GAN implementation
├── ohlcv_data/ # Raw OHLCV data for various tokens
├── ohlcv_data_standardized/# Standardized OHLCV data
├── scripts/ # Core analysis scripts
└── twitter/ # Twitter data collection scripts
- Custom VADER sentiment analysis tuned for crypto and meme-specific terms
- Real-time token price data collection via DexRabbit
- Twitter data scraping and analysis
- Time series sentiment aggregation
- SQLite database for efficient data storage
- GAN model for synthetic data generation
- Clone the repository
- Install dependencies:
pip install -r requirements.txt
- Create a
.envfile with your API credentials:DEXRABBIT_EMAIL=your_email DEXRABBIT_PASSWORD=your_password
-
Data Collection:
python twitter/data_collector.py # Collect Twitter data python twitter/fetch_tokens.py # Fetch token prices
-
Sentiment Analysis:
python scripts/meme_sentiment_analyzer.py
-
Data Standardization:
python scripts/standardize_ohlcv.py
The project uses a single SQLite database (sentiment_data.db) containing:
- Tweet content and metadata
- Author information
- VADER sentiment scores
- Token mappings
- Sentiment time series data
Feel free to submit issues and enhancement requests!