-
Notifications
You must be signed in to change notification settings - Fork 223
[ELEC1370] Exam update 2013-14-16 & new 2018 2020 #836
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
Bbalon-a
wants to merge
1
commit into
Gp2mv3:master
Choose a base branch
from
Bbalon-a:master
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
289 changes: 237 additions & 52 deletions
289
src/q4/circmes-ELEC1370/exam/2013/Juin/Majeure/circmes-ELEC1370-exam-2013-Juin-Majeure.tex
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
| @@ -1,26 +1,30 @@ | ||||||
| \documentclass[fr]{../../../../../../eplexam} | ||||||
| \usepackage{../../../../../../eplunits} | ||||||
| \usepackage[oldvoltagedirection]{circuitikz} | ||||||
| \usepackage{bodegraph} | ||||||
| \usepackage{pgfplots} | ||||||
| \usepackage{amsmath} | ||||||
| \usepackage{enumitem} | ||||||
|
|
||||||
|
|
||||||
| \pgfplotsset{compat=newest} | ||||||
| \tikzset{meter/.style={draw,thick,circle,fill=white,minimum size =0.75cm,inner sep=0pt}} | ||||||
|
|
||||||
| \hypertitle{circmes-ELEC1370}{4}{ELEC}{1370}{2013}{Juin}{Mineure} | ||||||
| {Nicolas Verbeek\and Adrien Couplet\and Martin Van Essche\and Guillaume Gilson\and Guillaume Colinet} | ||||||
| {Brieuc Balon} | ||||||
| {Claude Oestges, Bruno Dehez and Christophe Craeye} | ||||||
|
|
||||||
| \section{Question Oestges : phaseurs} | ||||||
| Soit le circuit suivant opérant à $\SI{20}{\kilo\hertz}$ avec $V_o=2.46 \angle\ang{126.87}$ V, | ||||||
| Soit le circuit suivant opérant à $20kHz$ avec $V_o=2.46 \angle 126.87^\circ$ V, | ||||||
| \begin{center} | ||||||
| \begin{circuitikz} | ||||||
| \draw | ||||||
| (0,2.5) to[american controlled current source,l=$2 V_x$] (0,0) | ||||||
| (2.5,2.5) -- (0,2.5) | ||||||
| (5,2.5) to [american voltage source,l_=$12\angle\ang{0}$ V] (2.5,2.5) | ||||||
| (2.5,0) to[R,l=$\SI{1}{\ohm}$,-*] (2.5,2.5) | ||||||
| (5,2.5) to[C,l=-j$\SI{1}{\ohm}$,i=$I_C$,v=$V_x$] (5,0) | ||||||
| (5,2.5) to[european resistor,*-,l=j$X$] (7.5,2.5) to [R,l=$\SI{1}{\ohm}$,v=$V_o$] (7.5,0) -- (5,0) | ||||||
| (5,2.5) to [american voltage source,l_=$12\angle 0^\circ$ V] (2.5,2.5) | ||||||
| (2.5,0) to[R,l=$1\Omega$,-*] (2.5,2.5) | ||||||
| (5,2.5) to[C,l=-1j$\Omega$,i=$I_C$,v=$V_x$] (5,0) | ||||||
| (5,2.5) to[european resistor,*-,l=j$X$] (7.5,2.5) to [R,l=$1\Omega$,v=$V_o$] (7.5,0) -- (5,0) | ||||||
| (7.5,2.5) to [short,*-o,l=$B$] (8.5,2.5) | ||||||
| (7.5,0) to [short,*-o,l=$A$] (8.5,0) | ||||||
| (0,0) -- (5,0); | ||||||
|
|
@@ -38,13 +42,134 @@ \section{Question Oestges : phaseurs} | |||||
| \end{enumerate} | ||||||
|
|
||||||
| \begin{solution} | ||||||
| Pour la résolution du circuit nous utiliserons les notations : | ||||||
| \begin{center} | ||||||
| \begin{circuitikz} | ||||||
| \draw | ||||||
| (0,2.5) to[american controlled current source,l=$2 V_x$] (0,0) | ||||||
| (2.5,2.5) -- (0,2.5) | ||||||
| (5,2.5) to [american voltage source,l_=$12\angle 0^\circ$ V, i = $I_S$] (2.5,2.5) | ||||||
| (2.5,0) to[R,l=$1\Omega$,i = $I_R$, v = $V_R$,-*] (2.5,2.5) | ||||||
| (5,2.5) to[C,l=-1j$\Omega$,i=$I_C$,v=$V_x$] (5,0) | ||||||
| (5,2.5) to[european resistor,*-,l=j$X$,v =$V_L$] (7.5,2.5) to [R,l=$1\Omega$,i=$I_0$,v=$V_o$] (7.5,0) -- (5,0) | ||||||
| (7.5,2.5) to [short,*-o,l=$B$] (8.5,2.5) | ||||||
| (7.5,0) to [short,*-o,l=$A$] (8.5,0) | ||||||
| (0,0) -- (5,0); | ||||||
| \end{circuitikz} | ||||||
| \end{center} | ||||||
| Sur base de la relation élémentaire $V=ZI$ nous pouvons écrire : | ||||||
| \begin{equation*} | ||||||
| I_o = 2.46\angle 126.87^\circ V | ||||||
| \end{equation*} | ||||||
| \begin{enumerate} | ||||||
| \item $I_C = 3.48\angle\ang{-98.13}$ A | ||||||
| \item $X=\SI{1}{\ohm}$ | ||||||
| \item $V_s = 8.57 \angle\ang{-176.7}$ V et $V_\text{eff} = 6.05$ V | ||||||
| \item $P = \SI{10}{\watt}$ | ||||||
| \item $V_\text{th} = V_o$ et $Z_\text{th} = 0.615 \angle 36.87^\circ$ | ||||||
| \item $Z_\text{L} = Z_\text{th}^{*}$ | ||||||
| \item En faisant la loi des mailles sur la maille centrale et une équation des noeuds sur le noeud en bas de la résistance de $1\Omega$ nous pouvons écrire : | ||||||
| \begin{equation*} | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| V_R + 12 + V_x &=&0 \\ | ||||||
| 2 V_x + I_c + I_o &=& \frac{V_R}{1} | ||||||
| \end{array} | ||||||
| \right. | ||||||
| \Leftrightarrow | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| V_R + V_x &=& =-12 \\ | ||||||
| 2 V_x -V_R + \frac{V_x}{-j} &=& -2.46\angle 126.87^\circ | ||||||
| \end{array} | ||||||
| \right. | ||||||
| \end{equation*} | ||||||
| \begin{equation*} | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| V_R + V_x &=& =-12 \\ | ||||||
| V_x (2- \frac{1}{j}) - V_R &=& -2.46\angle 126.87^\circ | ||||||
|
|
||||||
| \end{array} | ||||||
| \right. | ||||||
| \Leftrightarrow | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| V_x &=& = 3.385\angle 172.157^\circ [V] \\ | ||||||
| V_R &=& 8.658\angle -176.94^\circ [V] | ||||||
|
|
||||||
| \end{array} | ||||||
| \right. | ||||||
| \end{equation*} | ||||||
| On peut trouver le courant $I_c$ sur base de la relation élémentaire $V=ZI$: | ||||||
| \begin{equation*} | ||||||
| I_c = \frac{V_x}{-j} = 3.38\angle -97.843^\circ [A] | ||||||
| \end{equation*} | ||||||
| \item En faisant une loi des mailles sur la maille de droite nous pouvons écrire : | ||||||
| \begin{equation*} | ||||||
| V_L = V_x - Vo = 2.4068\angle-141.261^\circ [V] | ||||||
| \end{equation*} | ||||||
| On peut trouver $jX$ sur base de la relation élémentaire $V = ZI$ : | ||||||
| \begin{equation*} | ||||||
| jX = \frac{V_L}{I_o}=0.978\angle 91.869^\circ = - 0.032 + 0.978j \simeq 1j \Leftrightarrow X = 1 \rightarrow L = \frac{1}{\omega} =\frac{1}{2\pi \cdot 20000} = 7.957 [\mu H] | ||||||
| \end{equation*} | ||||||
| \item La tenion au borne de la source commandé vaut $V_R$: | ||||||
| \begin{equation*} | ||||||
| V_s = 8.658\angle -176.94^\circ [V] \rightarrow V_{eff} = \frac{V_s}{\sqrt{2}} = 6.12[V] | ||||||
| \end{equation*} | ||||||
| \item En faisant une loi des noeuds sur le noeud de la borne positive de la source de tension nous obtenons : | ||||||
| \begin{equation*} | ||||||
| I_s = 2V_x - I_R = 2V_x - V_R = 2.38\angle 35.55^\circ [A] | ||||||
| \end{equation*} | ||||||
| En considérant que la tension $V_o$ est valeur de crête nous pouvons écrire\footnote{Si c'était la valeur efficace nous n'aurions pas la facteur 2 au dénominateur} : | ||||||
| \begin{equation*} | ||||||
| P = \Re(S) = \frac{VI_s^\ast}{2} =\Re(6* 2.38\angle -35.55^\circ)= 11.61 [W] | ||||||
| \end{equation*} | ||||||
| \item Nous connaissons la tension de Thévenin ($V_{Th} = V_o$) calculons maintenant la résistance équivalente ($Z_{eq}$) sur base du circuit modifié : | ||||||
|
|
||||||
| \begin{center} | ||||||
| \begin{circuitikz} | ||||||
| \draw | ||||||
| (2.5,0) to[R,l=$1\Omega$] (2.5,2.5) | ||||||
| (2.5,2.5)--(5,2.5) to[C,l=$-1j\Omega$] (5,0) | ||||||
| (5,2.5) to[european resistor,l=j$X$,] (7.5,2.5) to [R,l=$1\Omega$] (7.5,0) -- (5,0) | ||||||
| (7.5,2.5) to [short,*-o,l=$B$] (8.5,2.5) | ||||||
| (7.5,0) to [short,*-o,l=$A$] (8.5,0) | ||||||
| (2.5,0) -- (5,0); | ||||||
| \end{circuitikz} | ||||||
| \end{center} | ||||||
| Nous pouvons observer que : | ||||||
| \begin{equation*} | ||||||
| Z_{eq} = 1\Omega || (jX\Omega +(-j\Omega||1\Omega)) = 0.447\angle 26.56^\circ [\Omega] | ||||||
| \end{equation*} | ||||||
| Le dipôle équivalent de Thévenin aux bornes $A-B$ est représenté ci-dessous : | ||||||
| \begin{center} | ||||||
| \begin{circuitikz} | ||||||
| \draw | ||||||
| (0,0) to [american voltage source,l=$V_{Th}$] (0,2) to [R,l=$Z_{eq}$](3,2) | ||||||
| (3,0)--(0,0); | ||||||
| \end{circuitikz} | ||||||
| \end{center} | ||||||
| \item L'impédance de charge qui maximiserait le transfert de la puissance est $Z_{charge} = Z_{eq}$. Prouvons l'égalité sur base d'un cas général: | ||||||
| \begin{center} | ||||||
| \begin{circuitikz} | ||||||
| \draw | ||||||
| (0,0) to [american voltage source,l=$V$] (0,2) to [european resistor,l=$Z_1$](3,2) to [european resistor, l=$Z_2$](3,0)--(0,0); | ||||||
| \end{circuitikz} | ||||||
| \end{center} | ||||||
| La puissance de $Z_2$ est donné par : | ||||||
| \begin{equation*} | ||||||
| P_{Z_2}(Z_2) = Z_2 I^2 ~~\mbox{avec}~~I=\frac{V}{Z_1+Z_2} | ||||||
| \end{equation*} | ||||||
| \begin{equation*} | ||||||
| \Leftrightarrow P_{Z_2}(Z_2) = V^2\frac{Z_2}{(Z_1+Z_2)^2} | ||||||
| \end{equation*} | ||||||
| Pour maximiser sa puissance nous allons voir pour quelles valeurs sa dérivée par rapport à $Z_2$ s'annule : | ||||||
| \begin{equation*} | ||||||
| \frac{\partial P_{Z_2}}{\partial Z_2}(Z_2) = V^2\frac{(Z_1+Z_2)^2-2(Z_1+Z_2)Z_2}{(Z_1+Z_2)^2}= V^2\frac{Z_1^2-Z_2^2}{(Z_1+Z_2)^2} =0 | ||||||
| \end{equation*} | ||||||
| \begin{equation*} | ||||||
| \Leftrightarrow Z_1^2=Z_2^2 \Rightarrow Z_1 = Z_2 | ||||||
| \end{equation*} | ||||||
| On peut voir que cette condition amène un maximum en regardant le signe de la dérivée seconde : | ||||||
| \begin{equation*} | ||||||
| \frac{\partial^2 P_{Z_2}}{\partial Z_2}(Z_2)= 2V^2\frac{Z_2-2Z_1}{(Z_1+Z_2)^4} | ||||||
| \end{equation*} | ||||||
| Dont le signe est négatif lorsque $Z_2=Z_1$. | ||||||
| \end{enumerate} | ||||||
| \end{solution} | ||||||
|
|
||||||
|
|
@@ -64,7 +189,7 @@ \section{Question Oestges : Bode et quadripôles} | |||||
| (8,2.5) to [open,v^=$V_o$] (8,0); | ||||||
| \end{circuitikz} | ||||||
| \end{center} | ||||||
| Le quadripôle de ce circuit est représenté par la matrice $Z$ suivante à la fréquence de $\SI{26.5}{\kilo\hertz}$ | ||||||
| Le quadripôle de ce circuit est représenté par la matrice $Z$ suivante à la fréquence de $26.5kHz$ | ||||||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
De mes souvenirs, ceci fonctionne aussi. |
||||||
| \[ \begin{bmatrix} 6-2j & 4-6j \\ 4-6j & 7+2j \end{bmatrix} \] | ||||||
| On demande de | ||||||
| \begin{enumerate} | ||||||
|
|
@@ -73,22 +198,196 @@ \section{Question Oestges : Bode et quadripôles} | |||||
| \item Sachant que $Z_1$ et $Z_3$ sont des impédances de type R-L série ($R_1$, $L_1$ et $R_3$, $L_3$) et que $Z_2$ est une impédance de type R-C série ($R_2$, $C_2$) calculer les différents composants. | ||||||
| \item Réécrire la matrice $Z$ du quadripôle en fonction des différent composants trouvés ci-dessus ainsi que de la pulsation $\omega$. | ||||||
| \item Tracer le diagramme de Bode du gain $A_\text{vf}$ pour les valeurs calculées des éléments si on branche en sortie du quadripôle une résistance très grande (supposée infinie). De quel type de filtre s’agit-il ? | ||||||
| \item Calculer l'impédance d’entrée du circuit si on branche en sortie du quadripôle une résistance de $\SI{5}{\ohm}$. | ||||||
| \item Calculer l'impédance d’entrée du circuit si on branche en sortie du quadripôle une résistance de $5\Omega$. | ||||||
| \end{enumerate} | ||||||
|
|
||||||
| \begin{solution} | ||||||
| \begin{enumerate} | ||||||
| \item La matrice $Z$ est la suivante | ||||||
| \[ [Z] = \begin{bmatrix} Z_1 + Z_2 & Z_2 \\ Z_2 & Z_2 + Z_3 \end{bmatrix} \] | ||||||
| \item $Z_1 = 2+4j$, $Z_2 = 4-6j$ et $Z_3 = 3+8j$ | ||||||
| \item $R_1 = \SI{2}{\ohm}$, $L_1=\SI{24}{\micro\henry}$, $R_3 = \SI{3}{\ohm}$, $L_3 = \SI{48}{\micro\henry}$, $R_3 = \SI{4}{\ohm}$, $C_2 = \SI{1}{\micro\farad}$. | ||||||
| \item La matrice $Z$ est la suivante | ||||||
| \[ [Z] = \begin{bmatrix}R_1+R_2+j\omega L_1 + \frac{1}{j\omega C_2} & R_2 + \frac{1}{j\omega C_2} \\ R_2 + \frac{1}{j\omega C_2} & R_2+R_3+j\omega L_3 + \frac{1}{j\omega C_2} \end{bmatrix} \] | ||||||
| \item Le gain s'écrit | ||||||
| \[ A_\text{vf} = \frac{j\omega C_2 R_2 + 1}{(j\omega)^2 L_1 C_2 + j\omega C_2 (R_1+R_2) +1} \] | ||||||
| C'est un filtre passe-bas. | ||||||
| \item $Z_\text{in} = 8.43 \angle\ang{11.09}$ | ||||||
| \item La matrice $Z$ est calculée grâce à : | ||||||
| \begin{equation*} | ||||||
| \begin{bmatrix} | ||||||
| V_i \\ | ||||||
| V_o | ||||||
| \end{bmatrix} = | ||||||
| \begin{bmatrix} | ||||||
| z_i & z_r \\ | ||||||
| z_f & z_o | ||||||
| \end{bmatrix} | ||||||
| \begin{bmatrix} | ||||||
| I_i \\ | ||||||
| I_o | ||||||
| \end{bmatrix} | ||||||
| \end{equation*} | ||||||
| En annulant le courant $I_o$ le circuit devient : | ||||||
| \begin{center} | ||||||
| \begin{circuitikz} | ||||||
| \draw | ||||||
| (2.5,2.5) to [european resistor,l^=$Z_1$,i=$I_i$] (5,2.5) | ||||||
| (5,2.5) to[european resistor,*-,l=$Z_2$] (5,0) | ||||||
| (7.5,2.5) to (5,2.5) | ||||||
| (7,2.5) to [short,-o] (8,2.5) | ||||||
| (5,0) to [short,-o] (8,0) | ||||||
| (5,0) to [short,-o] (2,0) | ||||||
| (2.5,2.5) to [short,-o] (2,2.5) | ||||||
| (2,2.5) to [open,v=$V_i$] (2,0) | ||||||
| (8,2.5) to [open,v^=$V_o$] (8,0); | ||||||
| \end{circuitikz} | ||||||
| \end{center} | ||||||
| Sur base de la relation élémentaire $Z=RI$ nous pouvons écrire : | ||||||
| \begin{equation*} | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| V_i &=& (Z_1+ Z_2)I_i \\ | ||||||
| V_o &=& Z_2 I_o | ||||||
| \end{array} | ||||||
| \right. | ||||||
| \Leftrightarrow | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| z_f &=& Z_1+ Z_2 [\Omega]\\ | ||||||
| z_i &=& Z_2 [\Omega] | ||||||
| \end{array} | ||||||
| \right. | ||||||
| \end{equation*} | ||||||
| En annulant le courant $I_i$ le circuit devient : | ||||||
| \begin{center} | ||||||
| \begin{circuitikz} | ||||||
| \draw | ||||||
| (2.5,2.5) to (5,2.5) | ||||||
| (5,2.5) to[european resistor,l=$Z_2$] (5,0) | ||||||
| (7.5,2.5) to[european resistor,-*,l_=$Z_3$,i=$I_o$] (5,2.5) | ||||||
| (7,2.5) to [short,-o] (8,2.5) | ||||||
| (5,0) to [short,-o] (8,0) | ||||||
| (5,0) to [short,-o] (2,0) | ||||||
| (2.5,2.5) to [short,-o] (2,2.5) | ||||||
| (2,2.5) to [open,v=$V_i$] (2,0) | ||||||
| (8,2.5) to [open,v^=$V_o$] (8,0); | ||||||
| \end{circuitikz} | ||||||
| \end{center} | ||||||
|
|
||||||
| Sur base de la relation élémentaire $Z=RI$ nous pouvons écrire : | ||||||
| \begin{equation*} | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| V_i &=& Z_2 I_o \\ | ||||||
| V_o &=& (Z_2+Z_3) Io | ||||||
| \end{array} | ||||||
| \right. | ||||||
| \Leftrightarrow | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| z_r &=& Z_2 [\Omega]\\ | ||||||
| z_0 &=& Z_2+Z_3 [\Omega] | ||||||
| \end{array} | ||||||
| \right. | ||||||
| \end{equation*} | ||||||
| La matrice Z est donc : | ||||||
| \begin{equation*} | ||||||
| Z = \begin{bmatrix} Z_1 + Z_2 & Z_2 \\ Z_2 & Z_2 + Z_3 \end{bmatrix} | ||||||
| \end{equation*} | ||||||
|
|
||||||
| \item Nous pouvons calculer les valeurs complexes de $Z_1$, $Z_2$ et $Z_3$ avec les valeurs données et la matrice Z calculée précédement : | ||||||
| \begin{equation*} | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| Z_1 +Z_2 &=& 6-2j \\ | ||||||
| Z_2 &=& 4-6j \\ | ||||||
| Z_2+Z_3 &=& 7+2j | ||||||
| \end{array} | ||||||
| \right. | ||||||
| \Leftrightarrow | ||||||
| \left \{ | ||||||
| \begin{array}{rcl} | ||||||
| Z_1 &=& 2+4j [\Omega] \\ | ||||||
| Z_2 &=& 4-6j [\Omega]\\ | ||||||
| Z_3 &=& 3+8j [\Omega] | ||||||
| \end{array} | ||||||
| \right. | ||||||
| \end{equation*} | ||||||
| \item Nous pouvons réécrire les relations calculées précédement sous la forme : | ||||||
| \begin{equation*} | ||||||
| \left\{\begin{matrix*}[l] | ||||||
| Z_1 = 2+4j = R_1+ j\omega L_1 \\ | ||||||
| Z_2 = 4-6j = R_2 + j\frac{1}{\omega C_2} \\ | ||||||
| Z_3 = 3+8j = R_3 +j\omega L_3 | ||||||
| \end{matrix*}\right. | ||||||
| \Leftrightarrow | ||||||
| \left\{\begin{matrix*}[l] | ||||||
| R_1 = 2 [\Omega]\\ | ||||||
| R_2 = 4 [\Omega]\\ | ||||||
| R_3 = 3 [\Omega]\\ | ||||||
| L_1 = \frac{4}{\omega} = \frac{4}{2*\pi*26500} = 24[\mu H]\\ | ||||||
| C_2 = \frac{1}{6\omega} = \frac{1}{6*2*\pi*26500}=1[\mu F]\\ | ||||||
| L_3 =\frac{8}{\omega} = \frac{8}{2*\pi*26500} = 48[\mu H]\\[1ex]\end{matrix*}\right. | ||||||
| \end{equation*} | ||||||
|
|
||||||
| \item La matrice $Z$ est la suivante | ||||||
| \[ Z = \begin{bmatrix}R_1+R_2+j\omega L_1 + \frac{1}{j\omega C_2} & R_2 + \frac{1}{j\omega C_2} \\ R_2 + \frac{1}{j\omega C_2} & R_2+R_3+j\omega L_3 + \frac{1}{j\omega C_2} \end{bmatrix} \] | ||||||
|
|
||||||
| \item Le gain s'écrit : | ||||||
| \begin{equation*} | ||||||
| A_{vf} = \frac{A_{vfo}}{1-\frac{z_r}{z_l}A_{vfo}} ~~\mbox{avec} ~~A_{vfo}= \frac{z_f}{z_i}\frac{z_L}{z_L+z_o} = \frac{z_f}{z_i}~~\mbox{car} ~~z_L \simeq \infty | ||||||
| \end{equation*} | ||||||
| \begin{equation*} | ||||||
| A_{vf}= \frac{\frac{z_f}{z_i}}{1-\frac{z_r}{z_L}\frac{z_f}{z_i}}= \frac{z_f}{z_i}=\frac{R_2+\frac{1}{j\omega C_2}}{R_1+R_2+j\omega L_1+\frac{1}{j\omega C_2}} = \frac{1+R_2 C_2 j \omega}{1+(R_1+R_2)j\omega C_2 + (j\omega)^2 L_1 C_2} | ||||||
| \end{equation*} | ||||||
| La fonction de transfert peut être réécrite sour la forme : | ||||||
| \begin{equation*} | ||||||
| H(j\omega) = \frac{1 + j\frac{\omega}{\omega_0}}{1+2\xi j\frac{\omega}{\omega_1}+ (j\frac{\omega}{\omega_1})^2}~~ | ||||||
| \mbox{avec}~~ | ||||||
| \left\{\begin{matrix*}[l] | ||||||
| \omega_0 = \frac{1}{R_2C_2} =2.5*10^{5} [\mbox{rad/s}]\\ | ||||||
| \omega_1 =\frac{1}{\sqrt{L_1C_1}} = 204124 [\mbox{rad/s}] \\ | ||||||
| \xi = \frac{\omega_1}{2}(R_1+R_2)C_2 = 0.6124 | ||||||
| \end{matrix*}\right. | ||||||
| \end{equation*} | ||||||
|
|
||||||
| \begin{center} | ||||||
| \begin{tikzpicture}[ | ||||||
| gnuplot def/.append style={prefix={}}, | ||||||
| ] | ||||||
|
|
||||||
| % Grid Style | ||||||
| \tikzset{ | ||||||
| semilog lines/.style={black}, | ||||||
| semilog lines 2/.style={gray,dotted}, | ||||||
| semilog half lines/.style={gray, dotted}, | ||||||
| semilog label x/.style={below,font=\tiny}, | ||||||
| semilog label y/.style={above,font=\tiny} } | ||||||
|
|
||||||
| % Magnitude Plot | ||||||
| \begin{scope}[xscale=7/5, yscale=3/50] | ||||||
| \UnitedB | ||||||
| \semilog{0}{8}{-30}{20} | ||||||
| %Asymp | ||||||
| \BodeGraph[green,samples=1000]{0:6.05}{\SOAmpAsymp{1}{0.6124}{204124}} | ||||||
| \BodeGraph[blue,samples=1000]{0:6.4}{-\POAmpAsymp{1}{0.000004}} | ||||||
| %Real | ||||||
| \BodeGraph[red,samples=1000]{0:6.7}{\SOAmp{1}{0.6124}{204124}-\POAmp{1}{0.000004}} | ||||||
| \end{scope} | ||||||
| % Phase plot | ||||||
| \begin{scope}[yshift=-5cm,xscale=7/5,yscale=3/180] | ||||||
| \UniteDegre | ||||||
| \OrdBode{30} | ||||||
| \semilog{0}{8}{-180}{90} | ||||||
| %Asymp | ||||||
| \BodeGraph[green,samples=1000]{0:8}{\SOArgAsymp{1}{0.6124}{204124}} | ||||||
| \BodeGraph[blue,samples=1000]{0:8}{-\POArgAsymp{1}{0.000004}} | ||||||
| %Real | ||||||
| \BodeGraph[red,samples=1000]{0:8}{\SOArg{1}{0.6124}{204124}-\POArg{1}{0.000004}} | ||||||
| \end{scope} | ||||||
| \end{tikzpicture} | ||||||
| \end{center} | ||||||
| C'est un filtre passe-bas. Le bleu correspond au tracé asymptotique du numérateur, le vert correspond au tracé asymptotique du dénominateur et le rouge correspond au tracé de la fonction de transfert. | ||||||
|
|
||||||
| \item L'impédance d'entrée s'écrit : | ||||||
| \begin{equation*} | ||||||
| Z_{in} = z_i (1+\frac{z_r}{z_i}A_{if,o})~~ \mbox{avec}~~A_{if,o} = -\frac{z_f}{z_o+z_L} | ||||||
| \end{equation*} | ||||||
| \begin{equation*} | ||||||
| \Leftrightarrow Z_{in}= z_i (1-\frac{z_r}{z_i}\frac{z_f}{z_o+z_L}) = (6-2j)(1-\frac{4-6j}{6-2j}\frac{4-6j}{(7+2j)+5}) = \frac{306}{37}+\frac{60}{37}j = 8.427\angle 11.09^\circ [\Omega] | ||||||
| \end{equation*} | ||||||
|
|
||||||
| \end{enumerate} | ||||||
| \end{solution} | ||||||
|
|
||||||
| \end{document} | ||||||
| \end{document} | ||||||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
De nouveau, n'enlève pas les noms de ceux qui ont écrit la version précédente et grâce à qui nous avons accès aux questions.