Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
186 changes: 186 additions & 0 deletions libcudacxx/include/cuda/std/__random/student_t_distribution.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
//
//===----------------------------------------------------------------------====//

#ifndef _CUDA_STD___STUDENT_T_DISTRIBUTION_H
#define _CUDA_STD___STUDENT_T_DISTRIBUTION_H

#include <cuda/std/detail/__config>

#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header

#include <cuda/std/__cmath/roots.h>
#include <cuda/std/__limits/numeric_limits.h>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes, I would like to see <cuda/std/__limits/numeric_limits.h> instead of <cuda/std/limits> also in the other distributions

#include <cuda/std/__random/gamma_distribution.h>
#include <cuda/std/__random/is_valid.h>
#include <cuda/std/__random/normal_distribution.h>

#if !_CCCL_COMPILER(NVRTC)
# include <iosfwd>
#endif // !_CCCL_COMPILER(NVRTC)

#include <cuda/std/__cccl/prologue.h>

_CCCL_BEGIN_NAMESPACE_CUDA_STD

template <class _RealType = double>
class student_t_distribution
{
static_assert(__libcpp_random_is_valid_realtype<_RealType>, "RealType must be a supported floating-point type");

public:
// types
using result_type = _RealType;

class param_type
{
private:
result_type __n_ = result_type{1};

public:
using distribution_type = student_t_distribution;

_CCCL_API constexpr explicit param_type(result_type __n = result_type{1}) noexcept
: __n_{__n}
{}

[[nodiscard]] _CCCL_API constexpr result_type n() const noexcept
{
return __n_;
}

[[nodiscard]] _CCCL_API friend constexpr bool operator==(const param_type& __x, const param_type& __y) noexcept
{
return __x.__n_ == __y.__n_;
}
#if _CCCL_STD_VER <= 2017
[[nodiscard]] _CCCL_API friend constexpr bool operator!=(const param_type& __x, const param_type& __y) noexcept
{
return !(__x == __y);
}
#endif // _CCCL_STD_VER <= 2017
};

private:
param_type __p_{};
normal_distribution<result_type> __nd_{};

public:
// constructor and reset functions
constexpr student_t_distribution() noexcept = default;

_CCCL_API constexpr explicit student_t_distribution(result_type __n) noexcept
: __p_{param_type{__n}}
{}
_CCCL_API constexpr explicit student_t_distribution(const param_type& __p) noexcept
: __p_{__p}
{}
_CCCL_API constexpr void reset() noexcept
{
__nd_.reset();
}

// generating functions
template <class _URng>
[[nodiscard]] _CCCL_API result_type operator()(_URng& __g)
{
return (*this)(__g, __p_);
}
template <class _URng>
[[nodiscard]] _CCCL_API result_type operator()(_URng& __g, const param_type& __p)
{
static_assert(__cccl_random_is_valid_urng<_URng>, "URng must meet the UniformRandomBitGenerator requirements");
gamma_distribution<result_type> __gd{__p.n() * result_type{.5}, result_type{2}};
return __nd_(__g) * cuda::std::sqrt(__p.n() / __gd(__g));
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
return __nd_(__g) * cuda::std::sqrt(__p.n() / __gd(__g));
return __nd_(__g) * ::cuda::std::sqrt(__p.n() / __gd(__g));

}

// property functions
[[nodiscard]] _CCCL_API constexpr result_type n() const noexcept
{
return __p_.n();
}

[[nodiscard]] _CCCL_API constexpr param_type param() const noexcept
{
return __p_;
}
_CCCL_API constexpr void param(const param_type& __p) noexcept
{
__p_ = __p;
}

[[nodiscard]] _CCCL_API static constexpr result_type min() noexcept
{
return -numeric_limits<result_type>::infinity();
}
[[nodiscard]] _CCCL_API static constexpr result_type max() noexcept
{
return numeric_limits<result_type>::infinity();
}

[[nodiscard]] _CCCL_API friend constexpr bool
operator==(const student_t_distribution& __x, const student_t_distribution& __y) noexcept
{
return __x.__p_ == __y.__p_;
}
#if _CCCL_STD_VER <= 2017
[[nodiscard]] _CCCL_API friend constexpr bool
operator!=(const student_t_distribution& __x, const student_t_distribution& __y) noexcept
{
return !(__x == __y);
}
#endif // _CCCL_STD_VER <= 2017

#if !_CCCL_COMPILER(NVRTC)
template <class _CharT, class _Traits>
friend ::std::basic_ostream<_CharT, _Traits>&
operator<<(::std::basic_ostream<_CharT, _Traits>& __os, const student_t_distribution& __x)
{
using _Ostream = ::std::basic_ostream<_CharT, _Traits>;
auto __flags = __os.flags();
__os.flags(_Ostream::dec | _Ostream::left | _Ostream::scientific);
_CharT __sp = __os.widen(' ');
_CharT __fill = __os.fill(__sp);
auto __precision = __os.precision(numeric_limits<result_type>::max_digits10);
__os << __x.n();
__os.precision(__precision);
__os.fill(__fill);
__os.flags(__flags);
return __os;
}

template <class _CharT, class _Traits>
friend ::std::basic_istream<_CharT, _Traits>&
operator>>(::std::basic_istream<_CharT, _Traits>& __is, student_t_distribution& __x)
{
using _Istream = ::std::basic_istream<_CharT, _Traits>;
auto __flags = __is.flags();
__is.flags(_Istream::skipws);
result_type __n;
__is >> __n;
if (!__is.fail())
{
__x.param(param_type{__n});
}
__is.flags(__flags);
return __is;
}
#endif // !_CCCL_COMPILER(NVRTC)
};

_CCCL_END_NAMESPACE_CUDA_STD

#include <cuda/std/__cccl/epilogue.h>

#endif // _CUDA_STD___STUDENT_T_DISTRIBUTION_H
1 change: 1 addition & 0 deletions libcudacxx/include/cuda/std/__random_
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
#include <cuda/std/__random/normal_distribution.h>
#include <cuda/std/__random/philox_engine.h>
#include <cuda/std/__random/seed_seq.h>
#include <cuda/std/__random/student_t_distribution.h>
#include <cuda/std/__random/uniform_int_distribution.h>
#include <cuda/std/__random/uniform_real_distribution.h>
#include <cuda/std/__random/weibull_distribution.h>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests

// <random>

// template<class RealType = double>
// class student_t_distribution

#include <cuda/std/__random_>
#include <cuda/std/cassert>
#include <cuda/std/cmath>

#include "random_utilities/stats_functions.h"
#include "random_utilities/test_distribution.h"
#include "test_macros.h"

template <class T>
struct student_t_cdf
{
using P = typename cuda::std::student_t_distribution<T>::param_type;

__host__ __device__ double operator()(double x, const P& p) const
{
// CDF of Student's t-distribution: F(x) = 0.5 + 0.5 * sgn(x) * I_{t²/(n+t²)}(0.5, n/2)
// where I is the regularized incomplete beta function and t = x
double t2 = x * x;
double n = p.n();
double ratio = t2 / (n + t2);
double beta_val = incomplete_beta(0.5, n / 2.0, ratio);

if (x >= 0)
{
return 0.5 + 0.5 * beta_val;
}
else
{
return 0.5 - 0.5 * beta_val;
}
}
};

template <class T>
__host__ __device__ void test()
{
[[maybe_unused]] const bool test_constexpr = false;
using D = cuda::std::student_t_distribution<T>;
using P = typename D::param_type;
using G = cuda::std::philox4x64;
cuda::std::array<P, 5> params = {P(1), P(2), P(5), P(10), P(30)};
test_distribution<D, true, G, test_constexpr>(params, student_t_cdf<T>{});
}

int main(int, char**)
{
test<double>();
test<float>();
return 0;
}
Loading