Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions Mathlib/Algebra/Star/Pointwise.lean
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,5 @@ end Set
@[simp]
lemma StarMemClass.star_coe_eq {S α : Type*} [InvolutiveStar α] [SetLike S α]
[StarMemClass S α] (s : S) : star (s : Set α) = s := by
ext x
simp only [Set.mem_star, SetLike.mem_coe]
exact ⟨by simpa only [star_star] using star_mem (s := s) (r := star x), star_mem⟩
ext
simpa using star_mem_iff
7 changes: 2 additions & 5 deletions Mathlib/Data/Set/Function.lean
Original file line number Diff line number Diff line change
Expand Up @@ -159,11 +159,8 @@ theorem MapsTo.iterate {f : α → α} {s : Set α} (h : MapsTo f s s) : ∀ n,

theorem MapsTo.iterate_restrict {f : α → α} {s : Set α} (h : MapsTo f s s) (n : ℕ) :
(h.restrict f s s)^[n] = (h.iterate n).restrict _ _ _ := by
funext x
rw [Subtype.ext_iff, MapsTo.val_restrict_apply]
induction n generalizing x with
| zero => rfl
| succ n ihn => simp [Nat.iterate, ihn]
ext
simpa using coe_iterate_restrict _ _ _

lemma mapsTo_of_subsingleton' [Subsingleton β] (f : α → β) (h : s.Nonempty → t.Nonempty) :
MapsTo f s t :=
Expand Down
6 changes: 2 additions & 4 deletions Mathlib/Order/Atoms/Finite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -54,10 +54,8 @@ open scoped _root_.IsSimpleOrder
variable [LE α] [BoundedOrder α] [IsSimpleOrder α] [DecidableEq α]

theorem univ : (Finset.univ : Finset α) = {⊤, ⊥} := by
change Finset.map _ (Finset.univ : Finset Bool) = _
rw [Fintype.univ_bool]
simp only [Finset.map_insert, Function.Embedding.coeFn_mk, Finset.map_singleton]
rfl
ext
simpa using (eq_bot_or_eq_top _).symm

theorem card : Fintype.card α = 2 :=
(Fintype.ofEquiv_card _).trans Fintype.card_bool
Expand Down
8 changes: 2 additions & 6 deletions Mathlib/Order/ConditionallyCompleteLattice/Indexed.lean
Original file line number Diff line number Diff line change
Expand Up @@ -278,12 +278,8 @@ theorem ciSup_mem_iInter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β →

lemma Set.Iic_ciInf [Nonempty ι] {f : ι → α} (hf : BddBelow (range f)) :
Iic (⨅ i, f i) = ⋂ i, Iic (f i) := by
apply Subset.antisymm
· rintro x hx - ⟨i, rfl⟩
exact hx.trans (ciInf_le hf _)
· rintro x hx
apply le_ciInf
simpa using hx
ext
simpa using le_ciInf_iff hf

lemma Set.Ici_ciSup [Nonempty ι] {f : ι → α} (hf : BddAbove (range f)) :
Ici (⨆ i, f i) = ⋂ i, Ici (f i) :=
Expand Down
8 changes: 2 additions & 6 deletions Mathlib/RingTheory/DedekindDomain/Ideal/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1008,12 +1008,8 @@ variable {A : Type*} [CommRing A] {p : Ideal A} (hpb : p ≠ ⊥) [hpm : p.IsMax

include hpb in
theorem coe_primesOverFinset : primesOverFinset p B = primesOver p B := by
classical
ext P
rw [primesOverFinset, factors_eq_normalizedFactors, Finset.mem_coe, Multiset.mem_toFinset]
exact (P.mem_normalizedFactors_iff (map_ne_bot_of_ne_bot hpb)).trans <| Iff.intro
(fun ⟨hPp, h⟩ => ⟨hPp, ⟨hpm.eq_of_le (comap_ne_top _ hPp.ne_top) (le_comap_of_map_le h)⟩⟩)
(fun ⟨hPp, h⟩ => ⟨hPp, map_le_of_le_comap h.1.le⟩)
ext
simpa using (mem_primesOver_iff_mem_normalizedFactors _ hpb).symm

include hpb in
theorem mem_primesOverFinset_iff {P : Ideal B} : P ∈ primesOverFinset p B ↔ P ∈ primesOver p B := by
Expand Down
Loading